GPS News  
EXO WORLDS
Preferentially Earth-sized Planets with Lots of Water
by Staff Writers
Bern, Switzerland (SPX) Oct 28, 2016


Artist's impression of Earth-sized planets orbiting a red dwarf star. Image courtesy NASA, ESA, and G.Bacon.

Computer simulations by astrophysicists at the University of Bern of the formation of planets orbiting in the habitable zone of low mass stars such as Proxima Centauri show that these planets are most likely to be roughly the size of the Earth and to contain large amounts of water. In August 2016, the announcement of the discovery of a terrestrial exoplanet orbiting in the habitable zone of Proxima Centauri stimulated the imagination of the experts and the general public.

After all this star is the nearest star to our Sun even though it is ten times less massive and 500 times less luminous. This discovery together with the one in May 2016 of a similar planet orbiting an even lower mass star (Trappist-1) convinced astronomers that such red dwarfs (as these low mass stars are called) might be hosts to a large population of Earth-like planets.

How could these objects look like? What could they be made of? Yann Alibert and Willy Benz at the Swiss NCCR PlanetS and the Center of Space and Habitability (CSH) at the University of Bern carried out the first computer simulations of the formation of the population of planets expected to orbit stars ten times less massive than the Sun.

"Our models succeed in reproducing planets that are similar in terms of mass and period to the ones observed recently," Yann Alibert explains the result of the study that has been accepted for publication as a Letter in the journal Astronomy and Astrophysics. "Interestingly, we find that planets in close-in orbits around these type of stars are of small sizes. Typically, they range between 0.5 and 1.5 Earth radii with a peak at about 1.0 Earth radius. Future discoveries will tell if we are correct!" the researcher adds.

Ice at the Bottom of the Global Ocean
In addition, the astrophysicists determined the water content of the planets orbiting their small host star in the habitable zone. They found that considering all the cases, around 90% of the planets are harbouring more than 10% of water. For comparison: The Earth has a fraction of water of only about 0.02%.

So most of these alien planets are literally water worlds in comparison! The situation could be even more extreme if the protoplanetary disks in which these planets form live longer than assumed in the models. In any case, these planets would be covered by very deep oceans at the bottom of which, owing to the huge pressure, water would be in form of ice.

Water is required for life as we know it. So could these planets be habitable indeed? "While liquid water is generally thought to be an essential ingredient, too much of a good thing may be bad," says Willy Benz.

In previous studies the scientists in Bern showed that too much water may prevent the regulation of the surface temperature and destabilizes the climate. "But this is the case for the Earth, here we deal with considerably more exotic planets which might be subjected to a much harsher radiation environment and/or be in synchronous [rotation]," he adds.

Following the Growth of Planetary Embryos
To start their calculations, the scientists considered a series of a few hundreds to thousands of identical, low mass stars and around each of them a protoplanetary disk of dust and gas. Planets are formed by accretion of this material.

Alibert and Benz assumed that at the beginning, in each disk there were 10 planetary embryos with an initial mass equal to the mass of the Moon. In a few day's computer time for each system the model calculated how these randomly located embryos grew and migrated. What kind of planets are formed depends on the structure and evolution of the protoplanetary disks.

"Habitable or not, the study of planets orbiting very low mass stars will likely bring exciting new results, improving our knowledge of planet formation, evolution, and potential habitability," summarizes Willy Benz.

Because these stars are considerably less luminous than the Sun, planets can be much closer to their star before their surface temperature becomes too high for liquid water to exist.

If one considers that these type of stars also represent the overwhelming majority of stars in the solar neighbourhood and that close-in planets are presently easier to detect and study, one understands why the existence of this population of Earth-like planets is really of importance.

Research paper: "Formation and Composition of Planets Around Very Low Mass Stars," Yann Alibert and Willy Benz, 2016, Astronomy and Astrophysics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University Of Bern
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO WORLDS
Discovery of binary-binary calls solar system formation into question
Gainesville FL (SPX) Oct 31, 2016
Everything we know about the formation of solar systems might be wrong, says University of Florida astronomy professor Jian Ge and his postdoc, Bo Ma. They've discovered the first "binary-binary" - two massive companions around one star in a close binary system, one so-called giant planet and one brown dwarf, or "failed star" The first, called MARVELS-7a, is 12 times the mass of Jupiter, while t ... read more


EXO WORLDS
Researchers root for more cassava research

EU probes 40-bn-euro ChemChina acquisition of Syngenta

The buzz about edible bugs: Can they replace beef

Report reveals a big dependence on freshwater fish for global food security

EXO WORLDS
Making silicon-germanium core fibers a reality

A new class of materials could realize quantum computers

Flexible optical design method for superconducting nanowire single-photon detectors

Exploring defects in nanoscale devices for possible quantum computing applications

EXO WORLDS
Russian Helicopters to build training center in Peru

Raytheon to produce T-100 trainer in Mississippi

U.S. Navy's King Stallion helicopter completes operational testing

Lockheed Martin receives two F-22 Raptor contract modifications

EXO WORLDS
Chinese ride-share king Didi Chuxing could go global

Long-vanished German car brand joins electric race

US judge approves massive VW emissions settlement

Driverless truck from Uber's Otto makes Colorado beer delivery

EXO WORLDS
Belgium's Wallonia misses EU 'ultimatum' on Canada trade pact

Belgian leaders near consensus for EU-Canada trade deal

Indian washermen keep tradition alive despite daily grind

EU-Canada trade summit 'still possible' despite holdout Belgium

EXO WORLDS
New warning over spread of ash dieback

Brazil land grab threatens isolated tribes: activists

The fight against deforestation: Why are Congolese farmers clearing forest?

Deforestation in Amazon going undetected by Brazilian monitors

EXO WORLDS
Hosted Payloads Offers Remedy for Looming Air Force Weather Forecasting Gap

It's what underneath that counts

Studies offer new glimpse of melting under Antarctic glaciers

NASA satellite sees sulfur dioxide diffuse across northern Iraq

EXO WORLDS
A tiny machine

Nanoantenna lighting-rod effect produces fast optical switches

Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.