Subscribe free to our newsletters via your
. GPS News .




AEROSPACE
Potential Iceland eruption could pump acid into European airspace
by Staff Writers
Washington DC (SPX) Jun 13, 2012


If a Laki-like eruption were to begin in late spring or summer, as it did in 1783, the daily average concentrations of sulfur dioxide during that first month would exceed 40 parts per billion by volume (ppbv) in up to a third of the North Atlantic and European airspace, the new simulations show.

A modern recurrence of an extraordinary type of volcanic eruption in Iceland could inject large quantities of hazardous gases into North Atlantic and European flight corridors, potentially for months at a time, a new study suggests. Using computer simulations, researchers are investigating the likely atmospheric effects if a "flood lava" eruption took place in Iceland today.

Flood lava eruptions, which stand out for the sheer amounts of lava and sulfurous gases they release and the way their lava sprays from cracks like fiery fountains, have occurred in Iceland four times in roughly the past thousand years, records indicate, the most recent being the deadly and remarkable eruption of Iceland's volcano Laki in 1783-84.

When Laki sprang to life on June 8, 1783, it generated a sulfuric acid haze that dispersed over Iceland, France, England, the Netherlands, Sweden, Italy, and other countries. It killed a fifth of Iceland's population and three-quarters of the island's livestock. It also destroyed crops, withered vegetation, and sowed human disease and death in several Northern European nations.

During the eight months that Laki erupted, the volcano blasted 122 million tons of sulfur dioxide into the atmosphere - seven times more than did the 1991 Mt. Pinatubo eruption in the Philippines and approximately 50 to 100 times more per day than Iceland's Eyjafjallajokull volcano released in 2010.

Researchers have found evidence in previous studies that a modern Laki-like eruption could disrupt European air traffic. Now, using two computer models that simulate physical and chemical behaviors of volcanic emissions, atmospheric scientist Anja Schmidt of the University of Leeds in the U.K. and her colleagues are refining scientific understanding of the likely concentrations and distributions of hazardous sulfur dioxide gas and sulfuric acid from such an event.

If a Laki-like eruption were to begin in late spring or summer, as it did in 1783, the daily average concentrations of sulfur dioxide during that first month would exceed 40 parts per billion by volume (ppbv) in up to a third of the North Atlantic and European airspace, the new simulations show.

That concentration falls just under the level of 47 ppbv at which the World Health Organization (WHO) deems chronic exposure to the gas a health hazard, although short-term exposures are considered hazardous only at much higher concentrations. In up to 10 percent of the air space, concentrations would exceed five times the WHO chronic exposure guideline, the researchers found.

The emissions wouldn't come from Laki itself, which volcanologists say has spent its fury, but could explode from several other Icelandic volcanic systems.

Most sulfur dioxide gas emitted by volcanoes rapidly undergoes chemical reactions to form an aerosol - minuscule particles suspended in the atmosphere - of sulfuric acid droplets. In the new simulations - focusing again on the first month of the eruption - average daily concentrations of the droplets, in up to 10 percent of the air space, would exceed 10 times London's average daily concentration of the corrosive pollutant, the researchers found.

"It's known that flying through a volcanic ash cloud can damage aircraft. In the case of a Laki-type eruption, high sulfur dioxide and sulfuric acid concentrations will have to be considered as an additional hazard," Schmidt said. An acceptable level of exposure for aircraft and their passengers is something for government aviation officials and industry to address, she added.

Schmidt presented the preliminary results from the study today in Selfoss, Iceland at the Chapman Conference on Volcanism and the Atmosphere, a meeting sponsored by the American Geophysical Union (AGU). Her collaborators include Kenneth Carslaw, also of Leeds, Claire Witham and Matthew Hort of the UK Met Office, in Exeter, and Thor Thordarson of the University of Edinburgh, also in the U.K. Previous work by Thordarson and others had suggested that a new Laki-like eruption could disrupt air traffic.

When Eyjafjallajokull erupted two years ago, its ash plume created a huge air traffic snarl across Europe for about a week, causing cancellations of more than 100,000 flights, according to published reports. A flood-lava eruption would also spew ash, but it would release far more sulfur dioxide than a volcano like Eyjafjallajokull does, Schmidt explained.

Judging from the past, a Laki-like eruption would likely continue for a lot longer than did Eyjafjallajokull's outburst, possibly cancelling many more flights, Schmidt said. Also, the eruption would be most intense in the first few months, which suggests that atmospheric effects would remain at about the same levels for the first two to three months. "But really, it's the next step in our research to analyze later stages of the impact and determine if and where emission concentrations might pose a short-term exposure hazard," she noted.

Schmidt has previously investigated the human health implications of a modern Laki-like eruption. A study published last year in Proceedings of the National Academy of Sciences, on which she was the first author, found that a modern Laki-type eruption could result in 142,000 deaths as a result of cardiopulmonary damage that its emissions would inflict on today's Europeans.

It's difficult to predict exactly what the consequences will be if and when another flood-lava eruption roils the skies of Iceland, Schmidt said, because so many variables affect the behaviour of a volcano and therefore its impacts on aviation and society. But, she added, with sound estimates of the range of possibilities, and how various factors influence them, aviation officials and the airline industry, health care providers and the rest of society can better prepare and plan for the harsh reality of the next Laki-like event.

.


Related Links
AGU
Aerospace News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








AEROSPACE
Medvedev confirms fifth-generation bomber
Kazan, Russia (UPI) Jun 12, 2012
Russia will move ahead with the development of a fifth-generation strategic bomber, Prime Minister Dmitry Medvedev said over the weekend. Medvedev, while visiting aviation manufacturing facilities Kazan, Russia, Saturday confirmed the government's plan of developing the new bomber as well as a fifth-generation fighter, RIA Novosti reported. The need for building a new generation ... read more


AEROSPACE
Notre Dame research shows food-trade network vulnerable to fast spread of contaminants

Parasitic plants 'steal' genes from their hosts

China threatened by farmland contamination

Low-carbon farming takes root in Brazil's Amazon

AEROSPACE
SFU helps quantum computers move closer

Rice, UCLA slash energy needs for next-generation memory

Unique approach to materials allows temperature-stable circuits

Integrated sensors handle extreme conditions

AEROSPACE
Potential Iceland eruption could pump acid into European airspace

Air industry head asks EU to postpone carbon tax

Iraqi Airways looks to update fleet

Medvedev confirms fifth-generation bomber

AEROSPACE
Composites could lead to greener cars

Asian investors buy Saab to make electric cars for China

US battery maker claims electric car breakthrough

Sao Paulo struggles to upgrade creaking transport system

AEROSPACE
Asylum seekers target Australia's Cocos

PC maker Dell to pay dividends

Germany, most appealing European market for China: study

China faces 'severe' trade situation: minister

AEROSPACE
Forests could be global warming factor

Teaching tree-thinking through touch

EO consortium to help fight global deforestation

Bamboo points way to green construction in Indonesia's Bali

AEROSPACE
Indra Incorporates Rapideye Satellite Capacity Into Its Earth Observation Service

Satellite Sees Smoke from Siberian Fires Reach the U.S. Coast

NASA's Ocean Salinity Pathfinder Celebrates its First Year in Orbit

Delving inside Earth from space

AEROSPACE
Self-assembling nanocubes for next generation antennas and lenses

Researchers watch tiny living machines self-assemble

'Nanocable' could be big boon for energy storage

Researchers love triangles




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement