Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Potential Future Data Storage at Domain Boundaries
by Staff Writers
Julich, Germany (SPX) Jan 20, 2014


Electron microscopic image of an antiferroelectric crystal, with the dark, prominent diagonal lines marking the boundaries. The bar at the bottom left indicates a length of 200 nanometers. Image courtesy Forschungszentrum Julich.

Storing more and more in an ever-smaller space - what sounds impossible is in fact just part of the daily routine in information technology, where for decades, increasing amounts of data have been successfully stored on media with ever higher densities. An international team, including researchers from Forschungszentrum Julich, has now discovered a physical phenomenon that could prove suitable for use in further data aggregation.

They found that domain walls, which separate areas in certain crystalline materials, display a polarization, potentially allowing information to be stored in the tiniest of spaces, thus saving energy. The results of this study have been published in the latest edition of the journal Nature Communications (DOI: 10.1038/ncomms4031).

Scientists from Forschungszentrum Julich, Swiss Federal Institute of Technology Lausanne (EPFL), University of Silesia in Katowice, Poland, and Xi'an Jiaotong University in China, have investigated so-called antiferroelectric crystals with the help of the most advanced electron microscopes and computer simulations. These materials possess no electrical polarization and for this reason, seemed up until recently to be of no interest for such applications.

The researchers have now discovered that certain areas within these materials do indeed exhibit ferroelectric polar properties.

Ferroelectricity is generated when displacements of positive and negative ions result in the formation of electrical dipoles. The magnitude and orientation of these dipoles, also known as polarization, can be altered using an external electric field and is able to maintain itself without any additional current until it is overwritten. Ferroelectric materials are for this reason already used, for example, to store data on train tickets.

The ferroelectric areas that the researchers have discovered are only around two nanometers thick and could therefore one day be used to store data in a tenth of the space that magnetic materials use. They form the boundaries between identically-structured areas of the otherwise antiferroelectric materials.

"We can imagine these materials as being like three-dimensional patchwork objects made from regularly-arranged building blocks, which are the domains", explains Dr. Xiankui Wei, visiting scientist at the Peter Grunberg Institute and post-doctoral researcher at EPFL.

"Within each individual building block, the polarization is absent due to cancellation of oppositely arranged electric dipoles in the basic structure unit. However, the boundaries or 'walls' between domains are polar."

Investigations using atomic resolution electron microscopy, with the help of a technique developed at Forschungszentrum Julich showed that each wall is uniformly polarized. To change the polarization and write the data, the only requirement is a voltage pulse, as the polarization is then stored until overwritten. As no current is necessary, this uses less energy than magnetic data storage does.

"What is especially exciting in terms of applications is the special arrangement of the walls", reports Prof. Nava Setter of EPFL; under the microscope it is possible to see at relatively low magnification, that the domains are separated from each other by long, parallel walls.

"The position of the strain-free walls is variable - upon application of an inhomogeneous electric field, they move either closer together or further apart. The researchers intend to investigate these phenomena in more detail, as the ability to accurately control the mobility and density of the walls are important requirements in terms of technical applications. Original publication:

Ferroelectric translational antiphase boundaries in nonpolar materials; Xian-Kui Wei, Alexander K. Tagantsev, Alexander Kvasov, Krystian Roleder, Chun-Lin Jia, Nava Setter; Nature Communications 5 (2014), Article number: 3031, published online: 8 January 2014; DOI: 10.1038/ncomms4031

.


Related Links
Peter Grunberg Institute - Microstructure Research (PGI-5)
Ecole polytechnique federale de Lausanne EPFL - Ceramics Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Penn research helps lay out theory for metamaterials that act as an analog computer
Philadelphia PA(SPX) Jan 16, 2014
The field of metamaterials has produced structures with unprecedented abilities, including flat lenses, invisibility cloaks and even optical "metatronic" devices that can manipulate light in the way electronic circuitry manipulates the flow of electrons. Now, the birthplace of the digital computer, ENIAC, is using this technology in the rebirth of analog computing. A study by researchers a ... read more


TECH SPACE
Soil production breaks geologic speed record

New Biomolecular Archaeological Evidence for Nordic "Grog," Trade

Receptors that help plants manage environmental change, pests and wounds

Exposure to pesticides results in smaller worker bees

TECH SPACE
2-proton bit controlled by a single copper atom

New Technique for Probing Subsurface Electronic Structure

Fastest organic transistor heralds new generation of see-through electronics

Intel to cut staff in face of stagnant earnings

TECH SPACE
Boeing Starts Assembly of Final KC-46A Test Aircraft

Novel technology reveals aerodynamics of birds flying in a V-formation

Indonesia plane crashes after lightning strike, 4 dead

Indonesia closes in on Grumman F-5 Tiger replacement

TECH SPACE
Peugeot shares plunge on Chinese, French investment plans

Peugeot 'approves' capital hikes by French state, Chinese partner

Hybrid cars fail to ease Pakistan's gas woes

Peugeot board to examine Chinese capital boost plans

TECH SPACE
China working-age population falls

HK police arrest employer of 'tortured' Indonesian maid

Hyundai starts work on world's biggest container ships

Thousands of Hong Kong domestic helpers rally for 'tortured' maid

TECH SPACE
Trees grow faster and store more carbon as they age

Large, older trees keep growing at a faster rate

Oldest trees are growing faster, storing more carbon as they age

Climate scientists bark up the big tree

TECH SPACE
China's pollution seen from space

Charles River Analytics Develops Satellite Image Processing System for NASA

Earth may be heaver than thought due to invisible belt of dark matter

More BARREL Balloons Take to the Skies

TECH SPACE
Layered security: Carbon nanotubes promise improved flame-resistant coating

Imec Celebrates 30 Years of Nanoelectronics Industry Innovation

Extraordinary sensors pushed to their boundaries

Understanding secondary light emissions by plasmonic nanostructures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement