GPS News  
FARM NEWS
Plants with jobs
by Staff Writers
Toronto, Canada (SPX) Oct 02, 2015


Plant diversity in agroecosystems -- coffee agroforestry in Central America. Image courtesy Adam Martin - U of T Scarborough. For a larger version of this image please go here.

Two University of Toronto Scarborough scientists have developed a new research framework for the agricultural sector that offers evidence-based understanding of the relationship between short-term yields, long-term sustainability and biodiversity.

In a paper published this week in the Journal of Applied Ecology, Marney Isaac, Canada Research Chair in Agroecosystems and Development and her co-author Adam Martin, describe how an approach known as "functional trait-based ecology" can apply to agricultural research and management. Rather than analyzing genetics or measuring yields, functional-trait research focuses on how plants both respond to and affect changes to their environment.

"Historically, the way we try to understand how crop diversity influences yield and the environment has been limited," says Isaac. "We propose a rigorous approach rooted in ecological science to measure agricultural impacts."

Isaac and Martin's framework can help answer many questions like: How do certain species cycle nutrients? Can they repel certain pests? Do they mitigate the effects of drought?

"Environmental changes and agricultural practices can affect the size of crops, their leaf and root characteristics, and their reproductive patterns," says Isaac. "Trait-based approaches tell us about the causes and consequences of these changes - not just in terms of yield, but also in terms of how crops interact with other plants, insects, microbes, and their surrounding environment."

In other ecological contexts, functional-trait research has a long and successful track record, but it is only just starting to find purchase in agriculture.

"Trait-based studies have been instrumental in advancing our understanding of ecological patterns in natural and experimental ecosystems," says Martin. "We wanted to create a blueprint for applying this approach to agricultural systems."

"Commodity crops often result in heavily intensified monocultures where you have just one crop species covering a whole plot of land," says Martin. "Monocultures can result in terrible environmental conditions, but they tend to maximize yield."

Monocultures can be more vulnerable and less resilient to drought, disease, invasive species and herbivorous pests. But an effort solely aimed at increasing species diversity might not solve the problem. The authors cite the example of coffee plantations, which can become "Rainforest Alliance Certified" if they diversify sufficiently.

"You may have 15 different tree species and three crop species on your farm," says Martin. "This is a great start, but functional ecology could improve such certifications. Our framework can provide data about how to choose species that play complementary roles that better foster resilience and sustainability."

Martin and Isaac hope their framework will help researchers consolidate functional-trait data about the world's most common crops.

"Once consolidated, we expect this data can help us better understand how agro-ecosystems function, and ideally inform sustainable agricultural management strategies," says Isaac.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Toronto
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Root microbiome engineering improves plant growth
Washington DC (SPX) Oct 02, 2015
Humans have been breeding crops until they're bigger and more nutritious since the early days of agriculture, but genetic manipulation isn't the only way to give plants a boost. In a review paper published in Trends in Microbiology, two integrative biologists present how it is possible to engineer the plant soil microbiome to improve plant growth, even if the plants are genetically identic ... read more


FARM NEWS
Plants with jobs

Root microbiome engineering improves plant growth

ASU study finds weather extremes harmful to grasslands

The origin and spread of 'Emperor's rice'

FARM NEWS
Researchers grow nanocircuitry with semiconducting graphene nanoribbons

New processes in modern ReRAM memory cells decoded

A different type of 2-D semiconductor

A better method for measuring luminous efficacy of LEDs

FARM NEWS
BAE Systems developing new, digital EW system for F-15s

Study outlines how to achieve improved airline fuel savings

U.S. bomber fleets re-aligned under single command

France to hold crunch talks in India on Rafale deal: official

FARM NEWS
Deer-vehicle collisions increase during breeding season

Oslo moves to ban cars from city centre

VW revs up recall plan, hunts for culprits in pollution scam

China to halve car purchase tax amid flagging sales

FARM NEWS
Mining giant Glencore rides commodities rollercoaster

Chinese president woos big business as US visit begins

Xi promises US investors fair deal: 'I voted for Disney'

China in driving seat as Ethiopian capital gets new tramway

FARM NEWS
Tourists replace rebels as Sri Lanka national park blooms

Deep in Estonia's woods, Mother Nature gets a megaphone

New forests cannot take in as much carbon as predicted

Blacklists protect the rainforest

FARM NEWS
Monsoon mission: A better way to predict Indian weather

Satellite Data Helps Migrating Birds Survive

exactEarth Launches Advanced Equatorial AIS Satellite

SSTL's DMC Constellation demonstrates 1-metre capability

FARM NEWS
Scientists build wrench 1.7 nanometers wide

Nanostructures for contactless control

Standards for triboelectric nanogenerators could facilitate comparisons

Nano-trapped molecules are potential path to quantum devices









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.