GPS News  
ICE WORLD
Plant gases can counteract Arctic climate change
by Staff Writers
Copenhagen, Denmark (SPX) Apr 06, 2016


Researchers measuring on the tiny tundra plants. Image courtesy Magnus Kramshoj.

Plant gasses possibly dampen the temperature rise in Greenland. Plants emit compounds to deter pests or attract pollinators, and as a side effect particles are formed when the compounds interact in the air. These particles can contribute to the formation of clouds, which reflect incoming solar radiation, and thus prevent solar heat from reaching the ground and warming it additionally.

Researchers from the University of Copenhagen have studied the effect of the imminent climate changes on the release of so-called "biogenic volatiles" to the atmosphere above Greenland. The sensational results are now being published in the prestigious scientific journal Nature Geoscience.

The study of biogenic volatile organic compounds (BVOCs) is in itself interesting. They include fragrances, which are released by all organisms, and they are important to the communication between plants and animals, e.g.

as a defense mechanism through the repelling of pests. This is well-known in the scientific community, but the possible role of these gasses is less well-known in connection with the arctic climate changes, which are predicted to be more pronounced than elsewhere on the planet.

Now, researchers from the Department of Biology and Center for Permafrost (CENPERM) at the University of Copenhagen have studied the biogenic volatiles in Greenland in a climate change context, and the results are sensational. The release of volatiles is known to be sensitive to temperature and light availability. Now the researchers show, that the biogenic volatiles of the arctic areas are much more sensitive to climate changes than previously expected.

A devil in paradise
It all began in 2007. Field experiments were set up in Kobbefjorden near Nuuk - the capital of Greenland - with the purpose of monitoring changes in ecosystems caused by climate changes. In one experiment small open top greenhouses were used to simulate warming of the vegetation. A less debated, nevertheless important, consequence of climate changes is the possible increase in the cloud cover. To mimic the response of the biogenic volatiles to an increased cloud cover, the researchers also put up hessian tents shading the vegetation. And this experiment payed off.

The project leader, associate professor Riikka Rinnan from the Department of Biology at UCPH, says:

"It seems that 3-4 times more biogenic volatiles are released from the tundra upon a two degree temperature rise, when the sun has a free rein. However, when the tundra is in the shade, the release of volatiles is decreased by 70%.

"Our results show that the release of volatile compounds is extremely sensitive to climate changes. In comparison to other biological processes, such as CO2 release through plant respiration, we discovered that the release of volatile compounds in the Arctic is almost 20 times as sensitive to temperature rise. And that is surprising".

It is the first time researchers have separately measured all ecosystem components. To locate the origin of the effect, the researchers measured on each of the dominant plants, while also surveying the effect on the bare soil.

"We show that the warming increases the release from plants, but not from the soil. We also show that the warming has actually reduced plant growth in the area, most likely through drought due to higher evapotranspiration caused by the warming. None the less, the impact on the release of biogenic volatiles was so substantial, that despite the reduction in biomass, we still see a rise for the ecosystem as a whole".

The positive side of things
Even though the "shady side" of the story is positive, the "sunny side of the tundra" is negative.

"When volatile compounds react in the atmosphere, they impact two different directions. Firstly, they prolong the lifespan of methane, which is an extremely powerful greenhouse gas - 25 times as bad as CO2. Secondly, they stimulate formation and growth of particles in the air, and this cools down the climate. Thanks to the purity of the arctic air, the release of the particle-forming volatiles from the tundra is of particular importance.

"Cloud formation depends on the presence of particles, on which water condenses, and an increased release of volatile compounds from the tundra leads to the formation of more particles in the atmosphere and perhaps clouds. This can have a large impact on the arctic climate", Riikka Rinnan points out.

Due to the large amounts of ice, the Arctic can influence global climate changes. And if the melting of the Greenland Ice Sheet can be slowed down, it will have a large effect on the climate in the rest of the world.

Research paper: Large increases in Arctic biogenic volatile emissions are a direct effect of warming


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Copenhagen
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
ONR researchers explore arctic land and sea at Navy ICEX
Washington DC (SPX) Apr 04, 2016
As the Navy's Ice Exercise (ICEX) 2016 winds to a close this week in the frigid waters of the Arctic Ocean, officials at the Office of Naval Research (ONR) have reported new scientific research that took place during the event that will enhance our understanding of, and ability to safely operate in, Arctic maritime environments. ICEX, a biennial, multi-week exercise sponsored by the Navy's ... read more


ICE WORLD
Agriculture expansion could reduce rainfall in Brazil's Cerrado

Study finds wide-reaching impact of nitrogen deposition on plants

McDonald's to add 1,500 outlets in China, Hong Kong, SKorea

Laser reveals water's secret life in soil

ICE WORLD
Second quantum revolution a reality with chip-based atomic physics

Hybrid pixel array detectors enter the low-noise regime

Taiwan's TSMC signs deal for $3 bn plant in China

New terahertz source could strengthen sensing applications

ICE WORLD
Australia says possible MH370 debris found on Mauritius

Profits soar at China's big three airlines

UK defence chief says Qatar warplane deal 'on the table'

New material could make aircraft deicers a thing of the past

ICE WORLD
Tesla unveils cheaper model aimed at mass market

US sues Volkswagen for deceptive 'clean diesel' campaign

Newest Tesla electric will aim at middle market

US sues Volkswagen for deceptive 'clean diesel' campaign

ICE WORLD
Silk Road snaked farther south than previously thought

Amazon makes foray into fashion world

Airbus warns against Brexit in letter to UK workers

China's Midea buys 80% of Toshiba's home appliances arm

ICE WORLD
Massive deforestation discovered in Brazil's Cerrado region

Massive deforestation found in Brazil's Cerrado

Maximum sentences for killers of Costa Rica environmentalist

Desert mangroves are major source of carbon storage

ICE WORLD
Satellites key to monitoring harmful emissions: space agencies

Tracking deer by NASA satellite

Fairy circles discovered in Australia by researchers

NASA Airborne Mission Looks At Fires and Cooling Atlantic Clouds Decks

ICE WORLD
Nanocrystal self-assembly sheds its secrets

Organic nanowires leave manmade technologies in the dust

Nanocage surfaces get 'makeover' in room temperature

Nanolight at the edge









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.