GPS News  
TIME AND SPACE
Physicists shrink particle accelerator
by Staff Writers
Hamburg, Germany (SPX) Oct 08, 2015


Terahertz accelerator modules easily fit into two fingers. Image courtesy DESY/Heiner Mueller-Elsner. For a larger version of this image please go here.

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio frequency structures. A single accelerator module is just 1.5 centimetres long and one millimetre thick. The terahertz technology holds the promise of miniaturising the entire set-up by at least a factor of 100, as the scientists surrounding DESY's Franz Kartner from the Center for Free-Electron Laser Science (CFEL) point out.

They are presenting their prototype, that was set up in Kartner's lab at the Massachusetts Institute of Technology (MIT) in the U.S., in the journal Nature Communications. The authors see numerous applications for terahertz accelerators, in materials science, medicine and particle physics, as well as in building X-ray lasers. CFEL is a cooperation between DESY, the University of Hamburg and the Max Planck Society.

In the electromagnetic spectrum, terahertz radiation lies between infrared radiation and microwaves. Particle accelerators usually rely on electromagnetic radiation from the radio frequency range; DESY's particle accelerator PETRA III, for example, uses a frequency of around 500 megahertz. The wavelength of the terahertz radiation used in this experiment is around one thousand times shorter.

"The advantage is that everything else can be a thousand times smaller too," explains Kartner, who is also a professor at the University of Hamburg and at MIT, as well as being a member of the Hamburg Centre for Ultrafast Imaging (CUI), one of Germany's Clusters of Excellence.

For their prototype the scientists used a special microstructured accelerator module, specifically tailored to be used with terahertz radiation. The physicists fired fast electrons into the miniature accelerator module using a type of electron gun provided by the group of CFEL Professor Dwayne Miller, Director at the Max Planck Institute for the Structure and Dynamics of Matter and also a member of CUI. The electrons were then further accelerated by the terahertz radiation fed into the module. This first prototype of a terahertz accelerator was able to increase the energy of the particles by seven kiloelectronvolts (keV).

"This is not a particularly large acceleration, but the experiment demonstrates that the principle does work in practice," explains co-author Arya Fallahi of CFEL, who did the theoretical calculations. "The theory indicates that we should be able to achieve an accelerating gradient of up to one gigavolt per metre."

This is more than ten times what can be achieved with the best conventional accelerator modules available today. Plasma accelerator technology, which is also at an experimental stage right now, promises to produce even higher accelerations, however it also requires significantly more powerful lasers than those needed for terahertz accelerators.

The physicists underline that terahertz technology is of great interest both with regard to future linear accelerators for use in particle physics, and as a means of building compact X-ray lasers and electron sources for use in materials research, as well as medical applications using X-rays and electron radiation.

"The rapid advances we are seeing in terahertz generation with optical methods will enable the future development of terahertz accelerators for these applications," says first author Emilio Nanni of MIT. Over the coming years, the CFEL team in Hamburg plans to build a compact, experimental free-electron X-ray laser (XFEL) on a laboratory scale using terahertz technology. This project is supported by a Synergy Grant of the European Research Council.

So-called free-electron lasers (FELs) generate flashes of laser light by sending high-speed electrons from a particle accelerator down an undulating path, whereby these emit light every time they are deflected. This is the same principle that will be used by the X-ray laser European XFEL, which is currently being built by an international consortium, reaching from the DESY Campus in Hamburg to the neighbouring town of Schenefeld, in Schleswig-Holstein. The entire facility will be more than three kilometres long.

The experimental XFEL using terahertz technology is expected to be less than a metre long. "We expect this sort of device to produce much shorter X-ray pulses lasting less than a femtosecond", says Kartner. Because the pulses are so short, they reach a comparable peak brightness to those produced by larger facilities, even if there is significant less light in each pulse. "With these very short pulses we are hoping to gain new insights into extremely rapid chemical processes, such as those involved in photosynthesis."

Developing a detailed understanding of photosynthesis would open up the possibility of implementing this efficient process artificially and thus tapping into increasingly efficient solar energy conversion and new pathways for CO2 reduction. Beyond this, researchers are interested in numerous other chemical reactions.

As Kartner points out, "photosynthesis is just one example of many possible catalytic processes we would like to investigate." The compact XFEL can be potentially also used to seed pulses in large scale facilities to enhance the quality of their pulses. Also, certain medical imaging techniques could benefit from the enhanced characteristics of the novel X-ray source.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Deutsches Elektronen-Synchrotron DESY
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Laser-wielding physicists seize control of atoms' behavior
Chicago IL (SPX) Oct 07, 2015
Physicists have wondered in recent years if they could control how atoms interact using light. Now they know that they can, by demonstrating games of quantum billiards with unusual new rules. In an article published in the Oct. 5 issue of Physical Review Letters, a team of University of Chicago physicists explains how to tune a laser to make atoms attract or repel each other in an exotic s ... read more


TIME AND SPACE
Tillage timing influences nitrogen availability and loss on organic farms

Climate-linked insurance a boon for poor farmers

Researchers find key link in understanding agriculture pests

The Danish nitrogen budget in a nutshell

TIME AND SPACE
Liquid cooling moves onto the chip for denser electronics

Graphene teams up with 2D crystals for faster data communications

Nanoscale photodetector could boost capacity of photonic circuits

New way of retaining quantum memories stored in light

TIME AND SPACE
Lockheed Martin brings F-16V to Indonesia

F-35 ejection seats raise worries on Capitol Hill

Northrop Grumman produces center fuselage for Japanese F-35

Boeing completes F-22 flight simulator upgrade

TIME AND SPACE
Toyota unveils self-driving car

ORNL demonstrates road to supercapacitors for scrap tires

Deer-vehicle collisions increase during breeding season

Oslo moves to ban cars from city centre

TIME AND SPACE
Japan's Abe hails new trade era, hopes China will join pact

Rare grey pearls fetch $5.27 million in Hong Kong auction

WageSpot app pulls back curtain on employee pay

Mining giant Glencore rides commodities rollercoaster

TIME AND SPACE
Broadleaf trees show reduced sensitivity to global warming

Study reveals answers for managing Guam's threatened native trees

Large trees - key climate influencers - die first in drought

NASA/USGS Mission Helps Answer: What Is a Forest

TIME AND SPACE
SMOS meets ocean monsters

Monsoon mission: A better way to predict Indian weather

Satellite Data Helps Migrating Birds Survive

exactEarth Launches Advanced Equatorial AIS Satellite

TIME AND SPACE
Pirouetting in the spotlight

Nanocellulose materials by design

Smaller is better for nanotube analysis

Scientists build wrench 1.7 nanometers wide









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.