![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Boston MA (SPX) Jun 09, 2016
Discovered just five years ago, topological semimetals are materials with unusual physical properties that could make them useful for future electronics. In the latest issue of Nature Physics, MIT researchers report a new theoretical characterization of topological semimetals' electrical properties that accurately describes all known topological semimetals and predicts several new ones. Guided by their model, the researchers also describe the chemical formula and crystal structure of a new topological semimetal that, they reason, should exhibit electrical characteristics never seen before. "Generally, the properties of a material are sensitive to many external perturbations," says Liang Fu, an assistant professor of physics at MIT and senior author on the new paper. "What's special about these topological materials is they have some very robust properties that are insensitive to these perturbations. That's attractive because it makes theory very powerful in predicting materials, which is rare in condensed-matter physics. Here, we know how to distill or extract the most essential properties, these topological properties, so our methods can be approximate, but our results will be exact." Semimetals are somewhat like semiconductors, which are at the core of all modern electronics. Electrons in a semiconductor can be in either the "valence band," in which they're attached to particular atoms, or the "conduction band," in which they're free to flow through the material as an electrical current. Switching between conductive and nonconductive states is what enables semiconductors to instantiate the logic of binary computation. Bumping an electron from the valence band into the conduction band requires energy, and the energy differential between the two bands is known as the "band gap." In a semimetal - such as the much-studied carbon sheets known as graphene - the band gap is zero. In principle, that means that semimetal transistors could switch faster, at lower powers, than semiconductor transistors do.
Parking-garage graphs In a topological semimetal, "topological" doesn't describe the geometry of the material itself; it describes the graph of the relationship between the energy and the momentum of electrons in the material's surface. Physical perturbations of the material can warp that graph, in the same sense that a donut can be warped into a garden hose, but the material's electrical properties will remain the same. That's what Fu means when he says, "Our methods can be approximate, but our results will be exact." Fu and his colleagues - joint first authors Chen Fang and Ling Lu, both of whom were MIT postdocs and are now associate professors at the Institute of Physics in Beijing; and Junwei Liu, a postdoc at MIT's Materials Processing Center - showed that the momentum-energy relationships of electrons in the surface of a topological semimetal can be described using mathematical constructs called Riemann surfaces. Widely used in the branch of math known as complex analysis, which deals with functions that involve the square root of -1, or i, Riemann surfaces are graphs that tend to look like flat planes twisted into spirals. "What makes a Riemann surface special is that it's like a parking-garage graph," Fu says. "In a parking garage, if you go around in a circle, you end up one floor up or one floor down. This is exactly what happens for the surface states of topological semimetals. If you move around in momentum space, you find that the energy increases, so there's this winding." The researchers showed that a certain class of Riemann surfaces accurately described the momentum-energy relationship in known topological semimetals. But the class also included surfaces that corresponded to electrical characteristics not previously seen in nature.
Cross sections The researchers' model predicted topological semimetals in which the ends of two Fermi arcs would join at an angle or cross each other in a way that was previously unseen. Through a combination of intuition and simulation, Fang and Liu identified a material - a combination of strontium, indium, calcium, and oxygen - that, according to their theory, should exhibit such exotic Fermi arcs. What uses, if any, these Fermi arcs may have is not clear. But topographical semimetals have such tantalizing electrical properties that they're worth understanding better. Of his group's new work, however, Fu acknowledges that for him, "the appeal is its mathematical beauty - and the fact that this mathematical beauty can be found in real materials."
Related Links Massachusetts Institute of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |