Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Physicists observe real-time restructuring of electron cloud in attoseconds
by Staff Writers
Moscow, Russia (SPX) May 25, 2015


This shows the laser-induced electronic-structure effects. Image courtesy ETH Zurich. For a larger version of this image please go here.

The recombination of electron shells in molecules, taking just a few dozen attoseconds (a billionth of a billionth of a second), can now be viewed "live," thanks to a new method developed by MIPT researchers and their colleagues from Denmark, Japan and Switzerland. An article detailing the results of their study has been published in the journal Nature Communications.

In recent years, scientists have learned how to study ultrafast processes taking place at the atomic and molecular levels, and research in this field is expected to yield some very important results.

In Germany, for instance, scientists are creating the European X-Ray Free-Electron Laser (XFEL).Russia, too, is participating in the project. Once built, XFEL should give the scientists an opportunity to observe changes occurring in molecules' nuclei during chemical reactions, which matters a great deal for the study of biochemical processes and proteins' structural properties.

Two groups of scientists - experimentalists led by Professor Hans Jakob Wornerof the Swiss Federal Institute of Technology in Zurich and theoreticians from Denmark, Japan and Russia headed by MIPT's Oleg Tolstikhin - have joined their efforts to study attophysical processes, which are processes lasting several attoseconds (10^-18 seconds).

To track processes taking virtually no time to happen, the scientists used the so-called pump-probe method. First, a molecule was impulsively oriented with one laser pulse. Then a second powerful, low-frequency laser pulse ionized the molecule, which generated high harmonic radiation.

By looking at the high harmonic spectrum, Worner's group was able to see the restructuring of the molecule's electron shell caused by the ionizing pulse's strong field, which is a significant step forward for attosecond spectroscopy.

"With this method, we were able to track structural changes in the electron shells of methyl fluoride (CH3F) and methyl bromide (CH3Br)molecules," said Oleg Tolstikhin, associate professor at MIPT's Theoretical Physics Section. "These processes are even faster than chemical reactions, in which atomic nuclei move. In this experiment, we were able to see the restructuring of the electron shell."

The experimental set-up consisted of a sapphire laser with a wavelength of 800 nanometers, which generated short pulses of very high intensity (10^14-10^15 watts per cm2). The amplitude of the electromagnetic field in such pulses is comparable to that in an electric field, which "feels" the electron in a hydrogen atom.

The laser hit its targets - methyl fluoride and methyl bromide gas molecules in a vacuum chamber. The researchers then analyzed the spectrum of the generated high harmonics using X-ray and ultraviolet spectrometers.

"This was the first time ever that the evidence of the restructuring of a molecule's electron shell caused by its interaction with the strong field of an ionizing laser pulse was observed in the high harmonic spectrum," said Tolstikhin.

"The observed processes lasted a few tens of attoseconds. Identifying the traces of such processes in high harmonic spectra was possible thanks to our asymptotic theory of the tunneling ionization of molecules in the case of degenerate electronic states. Our theoretical model describes the experimental results pretty well."

Tolstikhin also explained that the scientists were unable, and are unlikely to ever be able, to see moving electrons -that's ruled out by the laws of quantum mechanics. But what they did see is how the electron cloud "migrated" within the molecule.

A key role in such "migration" is played by a permanent dipole moment and degenerate states of the outer electron in the molecule. This was the reason why the researchers chose methyl fluoride and methyl bromide molecules for their study.

The method of tracking attoseconds-long processes, demonstrated in the experiment, opens up new possibilities for studyingfine chemical processes, which can be of critical importance for molecular biology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Syracuse physicists aid in discovery of subatomic process
Syracuse, NY (SPX) May 19, 2015
Physicists in Syracuse University's College of Arts and Sciences have helped discover a rare subatomic process. Their findings, featured in the current issue of Nature magazine (Macmillan Publishers Ltd., 2015), stem from the study of proton collisions at the CERN Large Hadron Collider (LHC) in Geneva, Switzerland. Distinguished Professor Sheldon Stone says the discovery came about when tw ... read more


TIME AND SPACE
Diverse soil communities can help offset impacts of global warming

Thousands worldwide march against Monsanto and GM crops

Fresh milk, off the grid

Thousands worldwide march against Monsanto and GM crops

TIME AND SPACE
New options for spintronic devices

Cheap radio frequency antenna printed with graphene ink

Mission possible: This device will self-destruct when heated

The next step in DNA computing: GPS mapping

TIME AND SPACE
New F-35 work for Kongsberg Defense

Australia touts industry's contribution to F-35 program

USMC F-35Bs undergoing shipboard operational tests

Airline chief casts doubt on plane hacking claim

TIME AND SPACE
Can virtual drivers resembling the user increase trust in smart cars

US pushes pedal on car-to-car communication

Google self-driving prototype cars to hit public roads

Out with heavy metal

TIME AND SPACE
China-backed infrastructure bank operational by end-2015

Japan PM unveils $110 bn plan for Asian infrastructure

HP sells stake in China unit for $2.3 billion

US charges China academics in trade theft scheme

TIME AND SPACE
Drought-induced tree mortality accelerating in forests

Study reveals how eastern US forests came to be

Impact of increased atmospheric CO2 concentration on European trees

Ecuador breaks Guinness reforestation record

TIME AND SPACE
NASA Soil Moisture Mission Begins Science Operations

In the Field: SMAP Gathers Soil Data in Australia

Mischief makers prompt Google to halt public map edits

Space technology identifies vulnerable regions in West Africa

TIME AND SPACE
Random nanowire configurations boost conductivity

Rice scientists use light to probe acoustic tuning in gold nanodisks

'Microcombing' creates stronger, more conductive carbon nanotube films

Chemists strike nano-gold with 4 new atomic structures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.