Subscribe free to our newsletters via your
. GPS News .




STELLAR CHEMISTRY
Physicists find a way to study coldest objects in the universe
by Staff Writers
London, UK (SPX) Dec 03, 2013


File image.

They are the coldest objects in the Universe and are so fragile that even a single photon can heat and destroy them.

Known as Bose-Einstein condensates (BECs) and consisting of just a cluster of atoms, it has up until now been impossible to measure and control these remarkable forms of matter simultaneously.

In a new study published today, 28 November, in the Institute of Physics and German Physical Society's New Journal of Physics, a group of researchers from the UK and Australia have come up with a new way of measuring BECs by using a filter to cancel out the damage caused by the streams of light that are typically used to measure them.

Not only can the filter create a best estimate of the state of BECs by removing "noise" from the measurements, it can also use these measurements to actively feedback to the BECs and remove some of the heating based on what has already been observed.

It is hoped that once this theory is realised experimentally, researchers will be able to gather much more information about BECs and extend their use in fundamental science, such as in atom lasers to precisely measure gravity and as models to study the emission of Hawking radiation from black holes.

In the future, they may also be used by the military to detect submarines, underground bunkers and threats, and to also see through stealth technology.

Lead author of the study Michael Hush, from the University of Nottingham, said: "It's like trying to check if your refrigerator is still working but not wanting to let cold air out by opening the door.

"The smallest amount of heat can destroy a BEC and many of even the most up-to-date imaging devices end up destroying the BEC after a single image. Experimentalists have demonstrated that a BEC can be imaged non-destructively for a limited amount of time, but our work will allow them to be imaged for much, much longer - potentially indefinitely."

BECs are a cluster of atoms that are cooled until they are only 100 nano-Kelvin above absolute zero. At this temperature, the atoms lose their individual identity and behave as one macroscopic entity, almost like a superatom.

Because BECs are extremely cold, they have very little "noise" associated with them, so they are ideal for investigating physics that involves atoms - such as probing atomic structure - because they will exhibit very little interference.

The best way of measuring a BEC is to use off-resonant light, which tends to bounce off the atoms instead of being absorbed and thrown back out - this happens when resonant light is used. Off-resonant light has a very different wavelength to the one that would naturally be absorbed and emitted by the atoms, so it doesn't disturb the BEC as much as resonant light and makes it much easier to measure.

Off-resonant light can cause some spontaneous-emission, however, which induces heating and can destroy a BEC, so the researchers developed a filter and feedback to control this heating effect, resulting in a net cooling of the BEC.

Hush continued: "We've essentially created a window to look into the world's coldest fridge. By peering through this window, we hope that scientists can potentially view previously inaccessible phenomena related to BECs and begin to realise their potential applications."

From 28 November, this paper can be downloaded here

.


Related Links
Institute of Physics
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Mach 1000 shock wave lights supernova remnant
Boston MA (SPX) Nov 29, 2013
When a star explodes as a supernova, it shines brightly for a few weeks or months before fading away. Yet the material blasted outward from the explosion still glows hundreds or thousands of years later, forming a picturesque supernova remnant. What powers such long-lived brilliance? In the case of Tycho's supernova remnant, astronomers have discovered that a reverse shock wave racing inwa ... read more


STELLAR CHEMISTRY
Benefit of bees even bigger than thought: food study

Romania sees opportunity in China's new taste for meat

Flower Power - Researchers breed new varieties of chamomile

A plant which acclimatizes with no exterior influence

STELLAR CHEMISTRY
50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

Chaotic physics in ferroelectrics hints at brain-like computing

STELLAR CHEMISTRY
Northrop Grumman Team Demonstrates Virtual Air Refueling Across Distributed Simulator Locations for USAF

Purdue science balloon, thought lost, makes dramatic return to campus

German helicopter deal examined by federal auditors: report

US telling airlines to stay safe in East China Sea

STELLAR CHEMISTRY
Sweden joins race for self-driving cars

Motorized bicycle wheel said to give 20 mph speed, range of 30 miles

Electric cars take 10% of new sales in Norway: official data

Carmakers rev up for return to Iran market

STELLAR CHEMISTRY
China lodges WTO complaint over US anti-dumping moves

UK's Cameron emphasises business in China visit

Top US court affirms state sales tax on Amazon

EU imposes anti-dumping measures on some Chinese solar panels

STELLAR CHEMISTRY
Researchers identify genetic fingerprints of endangered conifers

Lowering stand density reduces mortality of ponderosa pine stands

VTT introduces deforestation monitoring method for tropical regions

Philippines to plant more mangroves in wake of Typhoon Haiyan

STELLAR CHEMISTRY
Indra To Manage And Operate The Main Sentinel-2

NASA iPad app highlights the face of a changing Earth

Satellite map to help assess threats to Australia's Great Barrier Reef

Google Earth reveals untold fish catches

STELLAR CHEMISTRY
Ultra-sensitive force sensing with a levitating nanoparticle

Graphene nanoribbons for 'reading' DNA

New hologram technology created with tiny nanoantennas

Nano magnets arise at 2-D boundaries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement