GPS News  
TECH SPACE
Physicists build random anti-laser
by Brooks Hays
Washington (UPI) Mar 4, 2019

Scientists in Austria have built the inverse of a laser, an anti-laser.

Lasers turns energy into a specific light frequency. The device developed by researchers at the Vienna University of Technology does the opposite, absorbing a specific color of light and scattering nearly all of the energy.

The anti-laser technology -- described this week in the journal Nature -- may offer applications in a variety of electronic and optical fields.

"Every day we are dealing with waves that are scattered in a complicated way -- think about a mobile phone signal that is reflected several times before it reaches your cell phone," Stefan Rotter, a professor at TU Vienna's Institute for Theoretical Physics, said in a news release. "The so-called random lasers make use of this multiple scattering. Such exotic lasers have a complicated, random internal structure and radiate a very specific, individual light pattern when supplied with energy."

Rotter and his colleagues used the logic of the laser and worked backwards, constructing a model that showed the inner structure of an anti-laser device could be designed to absorb a specific light frequency.

"Because of this time-reversal analogy to a laser, this type of absorber is called an anti-laser," said Rotter. "So far, such anti-lasers have only been realized in one-dimensional structures, which are hit by laser light from opposite sides. Our approach is much more general. We were able to show that even arbitrarily complicated structures in two or three dimensions can perfectly absorb a specially tailored wave. That way, the concept can be used for a wide range of applications."

More than just a light absorber, an anti-laser works to effectively dissipate the energy of the lightwaves it swallows up.

"There is a complex scattering process in which the incident wave splits into many partial waves, which then overlap and interfere with each other in such a way that none of the partial waves can get out at the end," Rotter said.

Researchers at TU Vienna teamed with scientists at the University of Nice in France to confirm the mathematical logic of the anti-laser and develop a strategy for turning the concept into an actual device.

The anti-laser consists of an absorbing antenna inside a microwave chamber. The chamber is surrounded by Teflon cylinders. The cylinders reflect the scattered light waves back toward each other, creating a complex frequency pattern.

Tests proved the device works as theorized.

"First we send microwaves from outside through the system and measure how exactly they come back," said researcher Kevin Pichler. "Knowing this, the inner structure of the random device can be fully characterized. Then it is possible to calculate the wave that is completely swallowed by the central antenna at the right absorption strength. In fact, when implementing this protocol in the experiment, we find an absorption of approximately 99.8 percent of the incident signal."

According to the device's creators, the technology could have a variety of applications, including uses in communication technologies and medicine.

"Imagine, for example, that you could adjust a cell phone signal exactly the right way, so that it is perfectly absorbed by the antenna in your cell phone," Rotter said. "Also in medicine, we often deal with the task of transporting wave energy to a very specific point -- such as shock waves shattering a kidney stone."


Related Links
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Laser drill leads to world record in plasma acceleration
Hamburg, Germany (SPX) Feb 28, 2019
Using a laser to drill through a plasma, scientists working at the Lawrence Berkeley National Laboratory in the US have set a new world record for plasma accelerators: In a plasma tube only 20 centimetres long, the scientists accelerated electrons to an energy of 7.8 billion electron volts (GeV), a value for which today's most advanced conventional particle accelerators require hundreds of metres. The team led by Wim Leemans, then head of the Berkeley Lab Laser Accelerator (BELLA) Center and now A ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Discovery of sour genes in citrus may pave way for sweeter lemons, limes

French vineyards say ready to break glyphosate addiction

Boost for Australian grain industry

An uneasy alliance: Indigenous Traditional Knowledge enriches western science

TECH SPACE
Understanding high efficiency of deep ultraviolet LEDs

Terahertz wireless makes big strides in paving the way to technological singularity

Spintronics by 'straintronics'

Running an LED in reverse could cool future computers

TECH SPACE
Harris contracted for jammers for Navy F/A-18 aircraft

Honeywell awarded $150M for advanced turbine propulsion developmentw/ll

Boeing tapped for F-15E warning system development, testing

Bell Boeing signs $10.7M contract for V-22 Osprey radar upgrades

TECH SPACE
Tesla says its $35k electric car ready to roll

German carmakers team up to tackle 21st Century challenges

Tesla's 'mass market' $35k electric car ready to order, online

UK car output slumps on China slowdown, Brexit: data

TECH SPACE
Much to be done on China trade: US Trade Rep Lighthizer

China says it 'regrets' WTO ruling in favour of US on subsidies

A 'catastrophe' if US Congress fails to ratify USMCA: trade rep

US and China close to reaching major trade deal: report

TECH SPACE
Complete world map of tree diversity

World's biggest terrestrial carbon sinks are found in young forests

Indonesian firms owe $1.3 bn in forest damage fines: Greenpeace

US Senate votes to expand nationals parks, protected lands

TECH SPACE
On its 5th Anniversary, GPM Still Right as Rain

KBRwyle Awarded $19M to Perform Flight Ops for USGS Satellite

SNoOPI: A flying ace for soil moisture and snow measurements

Earth's atmosphere stretches out to the Moon - and beyond

TECH SPACE
The holy grail of nanowire production

A new spin in nano-electronics

Nanoparticle computing takes a giant step forward

Breakthrough nanoscience discovery made on flight from New York to Jerusalem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.