GPS News  
Physicists Establish Spooky Quantum Communication

Illustration only.
by Staff Writers
Ann Arbor MI (SPX) Oct 02, 2007
Physicists at the University of Michigan have coaxed two separate atoms to communicate with a sort of quantum intuition that Albert Einstein called "spooky." In doing so, the researchers have made an advance toward super-fast quantum computing. The research could also be a building block for a quantum internet. Scientists used light to establish what's called "entanglement" between two atoms, which were trapped a meter apart in separate enclosures (think of entangling like controlling the outcome of one coin flip with the outcome of a separate coin flip).

A paper on the findings appears in the Sept. 6 edition of the journal Nature.

"This linkage between remote atoms could be the fundamental piece of a radically new quantum computer architecture," said Professor Christopher Monroe, the principal investigator who did this research while at U-M, but is now at the University of Maryland. "Now that the technique has been demonstrated, it should be possible to scale it up to networks of many interconnected components that will eventually be necessary for quantum information processing."

David Moehring, the lead author of the paper who did this research as a U-M graduate student, says the most important feature of this experiment is the distance between the two atoms. Moehring graduated and now has a position at the Max-Planck-Institute for Quantum Optics in Germany.

"The separation of the qubits in our entangled state is the most important feature," Moehring said. "Localized entanglement has been performed in ion trap qubits in the past, but if one desires to build a scalable quantum computer network (or a quantum internet), the creation of entanglement schemes between remotely entangled qubit memories is necessary."

In this experiment, the researchers used two atoms to function as qubits, or quantum bits, storing a piece of information in their electron configuration. They then excited each atom, inducing electrons to fall into a lower energy state and emit one photon, or one particle of light, in the process.

The atoms, which were actually ions of the rare-earth element ytterbium, are capable of emitting two different types of photon of different wavelengths. The type of photon released by each atom indicates the particular state of the atom. Because of this, each photon was entangled with its atom.

By manipulating the photons emitted from each of the two atoms and guiding them to interact along a fiber optic thread, the researchers were able to detect the resulting photon clicks and entangle the atoms. Monroe says the fiber optic thread was necessary to establish entanglement of the atoms, but then the fiber could be severed and the two atoms would remain entangled, even if one were "(carefully) taken to Jupiter."

Each qubit's information is like a single bit of information in a conventional computer, which is represented as a 0 or a 1. Things get weird on the quantum scale, though, and a qubit can be either a 0, a 1, or both at the same time, Monroe says. Scientists call this phenomenon "superposition." Even weirder, scientists can't directly observe superposition, because the act of measuring the qubit affects it and forces it to become either a 0 or a 1.

Entangled particles can default to the same position once measured, for example always ending in 0,0 or 1,1.

"When entangled objects are measured, they always result in some sort of correlation, like always getting two coins to come up the same, even though they may be very far apart," Monroe said. "Einstein called this 'spooky action-at-a-distance,' and it was the basis for his nonbelief in quantum mechanics. But entanglement exists, and although very difficult to control, it is actually the basis for quantum computers."

Scientists could set the position of one qubit and know that its entangled mate will follow suit.

Entanglement provides extra wiring between quantum circuits, Monroe says. And it allows quantum computers to perform tasks impossible with conventional computers. Quantum computers could transmit provably secure encrypted data, for example. And they could factor numbers incredibly faster than today's machines, making most current encryption technology obsolete (most encryption today is based on the inability for man or machine to factor large numbers efficiently).

Related Links
University of Michigan
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Fluid Theory Confirmed By Foton
Paris, France (ESA) Sep 25, 2007
In scientific research, there is great satisfaction when theoretical work is eventually supported by experimentation. Such was the case this week for a team of Italian and US scientists when they received preliminary confirmation of a 10-year-old theory from a fluid science experiment that is currently orbiting the Earth on the Foton-M3 spacecraft.







  • Aircraft And Automobiles Thrive In Hurricane-Force Winds At Lockheed Martin
  • New Delft Material Concept For Aircraft Wings Could Save Billions
  • Cathay Pacific chief hits out at anti-aviation critics
  • Squabble over airline carbon emissions takes flight

  • Toyota says new fuel-cell car can go further on single tank
  • Envision Solar To Provide NREL With Solar Tree For Renewable Recharge Station
  • China's Chery group matures into global auto player
  • Judge rejects California bid to sue carmakers over warming

  • Boeing Supports New USAF GPS Ground Control System
  • China's military tests sophisticated real-time data system
  • ThalesRaytheonSystems To Provide Upgrade For Battle Control System
  • Northrop Grumman Receives Major Contract For Guardrail Modernization

  • US missile defense system scores intercept in test
  • US interceptors in Europe fast enough to hit Russian ICBMs: researcher
  • Bringing Optimistic Realism To Missile Defense Part Two
  • Boeing-led Missile Defense Team Tout Successful Missile Defense Intercept Test

  • Feeding The World Without Genetic Engineering
  • Joint Venture To Strengthen Cotton Breeding
  • Australian PM downplays link between drought, climate change
  • Emphasizing The Precision In Precision Agriculture

  • Japan gets extra seconds to brace for quakes
  • GMES Space Program Reaches Important Development Milestone
  • Northrop Grumman Completes Implementation Of Los Angeles Emergency Communication System
  • Food crisis could loom after Africa floods: Red Cross

  • Foton-M3 Experiments Return To Earth
  • Radio Wave Cooling Offers New Twist On Laser Cooling
  • SSC Communication System Flys On Russian Capsule Foton
  • Engineers Rescue Aging Satellites And Save Millions

  • Roving The Moon
  • Microsoft teams up in Japan to set robotics standards
  • Drive-By-Wire And Human Behavior Systems Key To Virginia Tech Urban Challenge Vehicle
  • Successful Jules Verne Rendezvous Simulation At ATV Control Centre

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement