Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Organic electronics: how to make contact between carbon compounds and metal
by Staff Writers
Munich, Germany (SPX) Feb 26, 2013


Upon contact between the oxygen atoms protruding from the backbone and the metal, the molecules' internal structure changed in such a way that they lost their semiconducting properties and instead adopted the metallic properties of the surface. Credit: Visualisation: Georg Heimel/HU Berlin.

Until now, however, it was practically impossible to accurately predict which molecules performed well on the job. They basically had to be identified by trial-and-error.

Now, an international team of scientists around Dr. Georg Heimel and Prof. Norbert Koch from the HZB and the Humboldt University Berlin has unraveled the mystery of what these molecules have in common. Their discovery enables more focused improvements to contact layers between metal electrodes and active materials in organic electronic devices.

"We have been working on this question for a number of years now and could at last come up with a conclusive picture using a combination of several experimental methods and theoretical calculations," Georg Heimel explains.

The researchers systematically examined different types of molecules whose backbones consist of the same chain of fused aromatic carbon rings. They differed in just one little detail: the number of oxygen atoms projecting from the backbone. These modified molecules were placed on the typical contact metals gold, silver, and copper.

Using photoelectron spectroscopy (UPS and XPS) at HZB's own BESSY II synchrotron radiation source, the researchers were able to identify chemical bonds that formed between the metal surfaces and the molecules as well as to measure the energy levels of the conduction electrons.

Colleagues from Germany's Tubingen University determined the exact distance between the molecules and the metal surfaces using x-ray standing wave measurements taken at the ESRF synchrotron radiation source in Grenoble, France.

These experiments showed that, upon contact between the oxygen atoms protruding from the backbone and several of the metals, the molecules' internal structure changed in such a way that they lost their semiconducting properties and instead adopted the metallic properties of the surface.

Despite similar prerequisites, this effect was not observed for the "bare"-backbone molecule. From the observation which molecules underwent these kinds of drastic changes on what metal, the researchers could derive general guidelines.

"At this point, we have a pretty good sense of how molecules ought to look like and what their properties should be if they are to be good mediators between active organic materials and metal contacts, or, as we like to call it, good at forming soft metallic contacts," says Heimel.

.


Related Links
Helmholtz Association of German Research Centres
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Researchers invent "acoustic-assisted" magnetic information storage
Corvallis OR (SPX) Feb 26, 2013
Electrical engineers at Oregon State University have discovered a way to use high- frequency sound waves to enhance the magnetic storage of data, offering a new approach to improve the data storage capabilities of a multitude of electronic devices around the world. The technology, called acoustic-assisted magnetic recording, has been presented at a professional conference, and a patent app ... read more


CHIP TECH
Maize part of coastal Peru diet for 5,000 years

Why sourdough bread resists mold

Cold-tolerant grapes expand wine country

Bees attracted to contrasting colors when looking for nectar

CHIP TECH
Rutgers physicists test highly flexible organic semiconductors

Quantum computers turn mechanical

Boeing Acquires CPU Tech's Microprocessor Business

Organic electronics: how to make contact between carbon compounds and metal

CHIP TECH
DARPA Developing Next Generation Of Vertical Flight Technology

EU MPs back temporary suspension of airline carbon tax

Embraer seeks larger executive jet market

F-35 flights should resume soon: Pentagon official

CHIP TECH
Mobile apps reshape urban taxi landscape

Estonia plugs electric cars as power prices soar

China's Geely to set up research centre in Sweden

Bridgestone reports soaring annual profit

CHIP TECH
China breached trade rules over EU scanner duties: WTO

Four Chinese drivers jailed over Singapore strike

China 2012 gold output up nearly 12%: report

Sharp to suspend tie-up talks with Hon Hai: report

CHIP TECH
Turkmenistan to plant 3 million trees to make desert bloom

Decoys could blunt spread of ash-killing beetles

Wetland trees a significant overlooked source of methane

Lungs of the planet reveal their true sensitivity to global warming

CHIP TECH
Northrop Grumman Delivers First Communications Payload for USAF's Enhanced Polar System

NASA Selects Launch Services for ICESat-2 Mission

New approach alters malaria maps

Promising New Technique for Probing Earth's Deep Interior

CHIP TECH
Scientists delve deeper into carbon nanotubes

New taxonomy of platinum nanoclusters

Nano-machines for 'bionic proteins'

Forging a new periodic table using nanostructures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement