GPS News  
CHIP TECH
Oregon researchers use light and sound waves to control electron states
by Staff Writers
Eugene OR (SPX) Apr 14, 2016


D. Andrew Golter, a research associate at the University of Oregon, led a project in which sound waves were combined with light waves to control the electronic state, or spin, of qubits in an experimental atom-like system. Image courtesy University of Oregon. For a larger version of this image please go here.

University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. The work was done on diamond topped with a layer of zinc oxide containing electrical conductors and performed at a temperature of 8 degrees Kelvin (-445.27 Fahrenheit, -265.15 Celsius) - just above absolute zero.

Using sound waves known as surface acoustic waves to change electron states could foster data transfer between quantum bits, the researcher said. The interaction of qubits, as is the case with binary bits in current computing, is seen as vital in building advanced systems. The research is detailed in a paper placed online by the journal Physical Review Letters.

"Computer chips in today's systems are based on electrical circuits," said Hailin Wang, a professor in the UO Department of Physics and member of the Oregon Center for Optical, Molecular and Quantum Science.

"What we have accomplished could lead to a new architecture - a new way - to design a computer chip. Instead of using electrical circuits we incorporate sound waves on a chip, with our eyes on acoustic circuits and also on potential applications in tomorrow's quantum computers."

The research focused on a goal of quantum-computing research - taking advantage of defects in diamond known as nitrogen vacancy centers, where a nitrogen atom substitutes for a carbon atom adjacent to a missing carbon atom. These defects are, in effect, artificial atoms that can be used as qubits.

It is in these centers where scientists want to harness control of the spin, or electron states, of qubits. Wang's lab is among many around the world looking to incorporate sound waves.

"We've brought in sound waves that we can drive into the diamond itself," said the study's lead author D. Andrew Golter, a research associate in Wang's lab. "We can tune the pitch to just the right frequency that lets us control the quantum state."

To add sound waves, researchers built a tiny speaker on the surface of diamond. Sound caused the diamond and zinc oxide layer to crunch up and expand back and forth. The sound wave travels across the surface of the diamond and interacts with the NV center. There, the researchers used lasers to monitor light being emitted, which allowed them to confirm electron states had been changed.

"You want qubits to be either on or off," Golter said.

"We use sound and light to switch them between different states. Light works well for some contexts, but it is sometimes hard to work with. If two qubits are in different locations and we want them to talk to each other, it is difficult to get light to go from one to the other. Light moves fast and can be hard to control. Sound is much slower, and it is easier to make it travel within this material because it automatically travels through solid matter."

In essence, using this new tool based on both light and sound can help create logic gates - the building blocks of digital circuitry - that serve to let qubits talk with one another, Wang said. "You can, in principle, use the sound waves to entangle two qubits," he said. "For quantum computers you need this."

For a solid material such as a chip, sound may be an ideal tool for building a network of interacting atoms, with sound waves carrying information from one atom to the next, Golter said.

"For basic physics and for potential technological applications, we want to have tools to control single atoms in really tiny systems," he said.

"Our approach has advantages. Sound is slow compared to light. Sound is confined to the chip. It would be a good way to do operations inside the solid material. We've shown this with a single artificial atom, which now means we should be able to build up to multiple artificial atoms using sound to network them together."

Co-authors of the study with Golter and Wang were Thein Oo and Mayra Amezcua, both of the UO Department of Physics, and Kevin A. Stewart of the School of Electrical Engineering and Computer Science at Oregon State University.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oregon
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Advance may make quantum computing more practical
Boston MA (SPX) Apr 13, 2016
Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. They exploit a property called superposition, which describes a quantum particle's counterintuitive ability to, in some sense, inhabit more than one physical state at the same time. But superposition is fragile, and finding ways to preserve it is one of ... read more


CHIP TECH
China to 'facilitate' new GM crops after years of waiting

Spreading seeds by human migration

Alibaba to invest $1.25 bn in China food delivery firm

Rising CO2 levels reduce protein in crucial pollen source for bees

CHIP TECH
Quantum dots enhance light-to-current conversion in layered semiconductors

Canada PM lights up Internet explaining quantum computing

Ames physicists discover new material that may speed computing

Nano-control of light pioneers new paths

CHIP TECH
ASRAAM missile tests for F-35 underway

StandardAero to upgrade engines on C-130H aircraft

Algeria orders more Russian Mi-28NE Night Hunter helicopters

F-22A Raptors heading to Europe

CHIP TECH
VW says top executives ready to accept 'sharp cuts' in bonuses

China auto sales up nearly 9% in March: industry group

VW managers in hot seat over bonus payments

Tesla recalls 2,700 Model X SUVs for seat problem

CHIP TECH
Aerospace, defense sector largest contributor to U.S. exports

New BRICS-supported bank approves first set of loans

China exports rise for first time in nine months

Australia to grant 10-year visas for Chinese

CHIP TECH
Study: Clear-cutting undermines carbon storage in forest floor

Protesters demand justice over death of Honduran activist

Greenpeace protests Polish logging of Europe's last primeval forest

International network to spy on trees

CHIP TECH
Flexible camera offers radically different approach to imaging

Sentinel-1B will complete European Radar Vision initiative

Coming soon to an orbit near you: GOES-R

Mapping software tracks threats to endangered species

CHIP TECH
Intracellular recordings using nanotower electrodes

'Honeycomb' of nanotubes could boost genetic engineering

A movie of the microworld: Physicists create nanoparticle picture series

NREL reveals potential for capturing waste heat via nanotubes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.