Subscribe free to our newsletters via your
. GPS News .




SOLAR DAILY
Oregon researchers shed new light on solar water-splitting process
by Staff Writers
Eugene OR (SPX) Dec 03, 2013


Shannon Boettcher, left, and Fuding Lin of the University of Oregon pursued a better understand the basic fundamentals involved in how solar water-splitting devices work. Credit: University of Oregon.

With the help of a new method called "dual-electrode photoelectrochemistry," University of Oregon scientists have provided new insight into how solar water-splitting cells work. An important and overlooked parameter, they report, is the ion-permeability of electrocatalysts used in water-splitting devices.

Their discovery could help replace a trial-and-error approach to paring electrocatalysts with semiconductors with an efficient method for using sunlight to separate hydrogen and oxygen from water to generate renewable energy, says Shannon W. Boettcher, professor of chemistry and head of the Solar Materials and Electrochemistry Laboratory in the UO's Materials Science Institute.

The research is described in a paper placed online Dec. 1 in advance of regular publication in the journal Nature Materials.

Solar water-splitting cells, which mimic photosynthesis, require at least two different types of materials: a semiconductor that absorbs sunlight and generates excited electrons and an electrocatalyst, typically a very thin film of a metal oxide that contains elements such as nickel, iron and oxygen, which serves to accelerate the rate at which electrons move on and off water molecules that are getting split into hydrogen and oxygen.

"We developed a new way to study the flow of electrons at the interface between semiconductors and electrocatalysts," Boettcher said.

"We fabricated devices which have separate metal contacts to the semiconductor and electrocatalyst."

To do so, lead author Fuding Lin, a postdoctoral researcher, electrically contacted a single-crystal of semiconducting titanium dioxide and coated it with various electrocatalyst films.

A film of gold only 10 nanometers thick was used to electrically contact the top of the electrocatalysts. Both contacts were used as probes to independently monitor and control the voltage and current at semiconductor-electrocatalyst junctions with a device known as a bipotentiostat. Lin focused on oxygen-evolution reaction -- the most difficult and inefficient step in the water-splitting process.

"This experiment allowed us to watch charge accumulate in the catalyst and change the catalyst's voltage," Boettcher said. It turns out, Lin said, that a thin layer of ion-porous electrocatalyst material works best, because the properties of the interface with the semiconductor adapt during operation as the charges excited by sunlight flow from the semiconductor onto the catalyst.

The research was designed to understand how maximum energy might be extracted from excited electrons in a semiconductor when the electrons enter the catalyst, where a chemical reaction separates oxygen and hydrogen. To date, Lin said, researchers have been experimenting with materials for creating efficient and cost-effective devices, but minimizing the energy loss associated with the catalyst-semiconductor interface has been a major hurdle.

In the study, Lin compared the movement of electrons between semiconductors coated with porous nickel oxyhydroxide -- a film previously shown by Boettcher's lab to yield excellent electrocatalytic efficiency for separating oxygen from water -- with semiconductors modified with non-permeable films of iridium oxide.

"The ion porous material allows water and ions to permeate the catalyst material," Lin said. "When these catalysts are in solution the catalyst's energy can move up and down as its oxidation state changes."

Catalysts with non-porous structures in semiconductor-catalytic junctions don't show this behavior and typically don't work as well, said Boettcher, who also is a member of Oregon BEST (Oregon Built Environment and Sustainable Technologies Center), a state signature initiative.

Converting sunlight into energy and storing it for later use in an economically viable way is a major challenge in the quest to replace fossil fuels with renewable energy. Traditional solar photovoltaic cells absorb sunlight to form excited electrons that are funneled into wires as electricity but storing energy as electricity, for example in batteries, is expensive.

Details about how excited electrons move from semiconductors to catalysts have been poorly understood, Boettcher said. "This lack of understanding makes improving water-splitting devices difficult, as researchers have been relying on trial-and-error instead of rational design."

The system used in the study, Boettcher added, was not efficient.

"That wasn't our goal," he said. "We wanted to understand what's happening at a basic level with well-defined materials. This will facilitate the design of systems that are more efficient using other materials."

"Researchers at the University of Oregon are reengineering the science, manufacturing and business processes related to critical products," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School.

"This important discovery by Dr. Boettcher and his team could lead to more efficient systems that help foster a sustainable future."

.


Related Links
University of Oregon
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Natcore Technology Moves Toward Low-Temperature Production Of Solar Cells
Red Bank NJ (SPX) Dec 03, 2013
Two weeks after an independent study concluded that Natcore Technology's black silicon technology could reduce silicon solar cell production costs by up to 23.5%, the company has taken additional steps that could further reduce production costs and hazardous effluents. Black silicon technology can eliminate the plasma enhanced chemical vapor deposition (PECVD) of silicon nitride currently ... read more


SOLAR DAILY
Benefit of bees even bigger than thought: food study

Romania sees opportunity in China's new taste for meat

Flower Power - Researchers breed new varieties of chamomile

A plant which acclimatizes with no exterior influence

SOLAR DAILY
50 Meters of Optical Fiber Shrunk to the Size of Microchips

Chips meet Tubes: World's First Terahertz Vacuum Amplifier

NIST demonstrates how losing information can benefit quantum computing

Chaotic physics in ferroelectrics hints at brain-like computing

SOLAR DAILY
Northrop Grumman Team Demonstrates Virtual Air Refueling Across Distributed Simulator Locations for USAF

Purdue science balloon, thought lost, makes dramatic return to campus

German helicopter deal examined by federal auditors: report

US telling airlines to stay safe in East China Sea

SOLAR DAILY
Sweden joins race for self-driving cars

Motorized bicycle wheel said to give 20 mph speed, range of 30 miles

Electric cars take 10% of new sales in Norway: official data

Carmakers rev up for return to Iran market

SOLAR DAILY
China lodges WTO complaint over US anti-dumping moves

UK's Cameron emphasises business in China visit

Top US court affirms state sales tax on Amazon

EU imposes anti-dumping measures on some Chinese solar panels

SOLAR DAILY
Researchers identify genetic fingerprints of endangered conifers

Lowering stand density reduces mortality of ponderosa pine stands

VTT introduces deforestation monitoring method for tropical regions

Philippines to plant more mangroves in wake of Typhoon Haiyan

SOLAR DAILY
Indra To Manage And Operate The Main Sentinel-2

NASA iPad app highlights the face of a changing Earth

Satellite map to help assess threats to Australia's Great Barrier Reef

Google Earth reveals untold fish catches

SOLAR DAILY
Ultra-sensitive force sensing with a levitating nanoparticle

Graphene nanoribbons for 'reading' DNA

New hologram technology created with tiny nanoantennas

Nano magnets arise at 2-D boundaries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement