GPS News  
TECH SPACE
Opening the Van der Waals' sandwich
by Staff Writers
Washington DC (SPX) Nov 03, 2017


File image

Eighty years after the theoretical prediction of the force required to overcome the van der Waals' bonding between layers in a crystal, engineering researchers at Tohoku University have measured it directly. They report their results this week in the Journal of Applied Physics, from AIP Publishing.

In its proof-of-concept, the team also created more durable gallium selenide crystals. The accomplishment could advance the development of terahertz and spintronics technologies, used in a range of applications from medical imaging to quantum computers.

"This is the first time anyone has directly measured the van der Waals bonding force in the layers of a crystal," Tadao Tanabe, one of the authors, said. "Even high school students know of this force, but in crystals it was very difficult to measure directly."

Though considered promising for many technologies, the use of gallium selenide crystals has been hampered by the fact that they're notoriously fragile. To make them stronger, Tanabe's team, including Department of Materials Science colleague Yutaka Oyama, imagined growing crystals with small amounts of the selenium replaced with the rare element tellurium.

The researchers surmised that tellurium's larger electron cloud would produce greater van der Waals' forces between the crystal layers, strengthening the overall structure. Van der Waals' are weak electric forces that attract atoms to one another through subtle shifts in the atom's electron configurations.

The team grew and compared three different types of crystals: one pure gallium selenide, one with 0.6 percent tellurium and one with 10.6 percent tellurium. To test the effect on the tellurium on interlayer bonding, the team invented the equivalent of a crystal sandwich opener. Their system is able to measure with exquisite detail the tensile strength, the force required to pull the crystal until it breaks.

"The tensile testing system is very simple in some ways," Tanabe said. "But it was very difficult to develop a way to identify the exact point at which the crystal broke."

The crystals tested were about 3 millimeters in width, and only 1/5 of a millimeter thick, about half the thickness of a piece of standard printer paper. Each crystal is comprised of hundreds of individual layers.

The team used special double-sided tape on either side of a crystal to hold it between an anchored stage and a moveable one that could be pulled away slowly, at a rate of 50 millionths of a meter per second. "This enabled us to very precisely measure the interlayer force at which the crystal broke," Tanabe said.

The researchers found that the interlayer van der Waals bonding in the tellurium-doped crystals was seven times stronger than in pure gallium selenide ones.

With the addition of tellurium, the soft and cleavable gallium selenide crystal becomes rigid by enhancement of the van der Waals' bonding force, the authors report, paving the way for using this system to improve crystal-based technologies.

Research Report: "Effect of adding Te to layered GaSe crystals to increase the Van der Waals bonding force"

TECH SPACE
Small droplets are a surprise: They disappear more slowly than they 'should'
Warsaw, Poland (SPX) Oct 31, 2017
Seemingly, we already know everything there is to know about evaporation. However, we've had another surprise: it turns out that small drops are stragglers and they evaporate more slowly than their larger counterparts, according to physicists from the Warsaw Institutes of the Polish Academy of Sciences. This applies not only to water but also to other liquids: it turns out that very small ... read more

Related Links
American Institute of Physics
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Pigging out: internet mocks McDonald's new China name

Crops evolving 10 millennia before experts thought

EU member states to vote on five-year weedkiller renewal next month

Watching plant photosynthesis...from space

TECH SPACE
Deep-depletion: A new concept for MOSFETs

Resistive memory components the computer industry can't resist

Nanoelectronic breakthrough may lead to more efficient quantum devices

Research team led by NUS scientists breaks new ground in memory technology

TECH SPACE
Singapore opens new, high-tech airport terminal

China's three big airlines see rise in Q3 net profit

Highly flexible wings tested

Embraer, Sierra Nevada supplying more A-29 aircraft for Afghan air force

TECH SPACE
Tesla slides on murky outlook for fixing Model 3 production woes

Investors fuel a multibillion-dollar ride-sharing frenzy

Energy firms back investment into diesel engine

'Dieselgate' costs choke Volkswagen profits

TECH SPACE
Hong Kong skyscraper sold for record $5.15 bn

China factory activity steady in October: independent data

China cracks down on fraudulent provincial growth figures

China slams US aluminium foil tariff ahead of Trump visit

TECH SPACE
Peat bogs defy the laws of biodiversity

Amazonian hunters deplete wildlife but don't empty forests

Indigenous groups warn Paris accord imperiled by deforestation

Forest fires contributed to record global tree cover loss

TECH SPACE
Earth Observation market worth $8-15B by 2026

When surrounding farms get hot and dry, cities cool off

GOES-T Satellite "Brains" and "Body" Come Together

Keeping an Eye on Earth's Energy Budget

TECH SPACE
Researchers reveal the effect of nano-diamond on magnetorheological fluids

Researchers show how nanoscale patterning can decrease metal fatigue

New technique produces tunable, nanoporous materials

Terahertz spectroscopy goes nano









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.