GPS News  
One-Nanometer Resolution Is Goal for Optical Imaging Photonics

In addition to achieving a breakthrough in arranging nanostructures, Yong Xu (pictured) hopes that his research will lead to observation of the "vacuum field" at a resolution of one nanometer.
by Staff Writers
Blacksburg, VA (SPX) Mar 11, 2007
Producing optical images at resolutions as low as one nanometer is the goal of Virginia Tech College of Engineering researcher Yong Xu, who has received a National Science Foundation (NSF) Faculty Early Career Development Program (CAREER) Award. Xu, an assistant professor of electrical and computer engineering, secured the five-year CAREER grant, which is worth $400,000 and is NSF's most prestigious award for creative junior faculty who are considered likely to become academic leaders of the future.

"The resolution of most optical microscopes is restricted by the so-called 'diffraction limit,' which means we cannot produce optical images with resolutions higher than a few hundred nanometers," Xu said. "Currently, the most advanced optical microscope can achieve a resolution only as low as 50 nanometers."

In the field of nanotechnology, researchers are discovering ways to arrange atoms into unique structures on the molecular scale. Xu is attempting to produce an optical microscope that can observe nanostructures at a resolution of one nanometer - which is equal in size to approximately one-billionth of a meter, or the diameter of four atoms.

In addition to achieving a breakthrough in arranging nanostructures, Xu hopes that his research will lead to observation of the "vacuum field" at a resolution of one nanometer.

"Vacuum field refers to the tiny amount of electric field fluctuations that can exist in the absence of any sources such as electrons or atoms," Xu explained. "Even though vacuum field cannot be directly measured, without it no light source can emit light. Observing the vacuum field at one nanometer resolution would help scientists solve one of the few remaining mysteries of quantum electrodynamics."

All of this, Xu believes, can ultimately lead to chip-scale quantum information processing and can help boost the pace of discovery in nanophotonics research and engineering.

Every CAREER project includes an educational component, and Xu will help develop a nanophotonics education program at Virginia Tech. He also plans to mentor female and African American students at the university and in local high schools, with the aim of encouraging their participation in nanophotonics research and engineering.

Xu, who is affiliated with Virginia Tech's Center for Photonics Technology, is investigating a number of related areas, including the development of nanoscale optical sensors for chemical and biological applications. He holds a patent on semiconductor surface lenses and shaped structures and has a patent pending in the area of efficient electro-optical modulation.

Before coming to Virginia Tech in 2004, Xu was a postdoctoral scholar at the California Institute of Technology, where he completed his Ph.D. in physics in 2001. He earned his bachelor's degree in applied physics with a minor in mathematics at Tsinghia University in Beijing, China.

Related Links
Photonics at Virginia Tech
Nano Technology News From SpaceMart.com
All about the technology of space and more
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Frozen Lightning Offers New Type Of Nanoelectronic Switch
Washington DC (SPX) Mar 05, 2007
Researchers at the National Institute of Standards and Technology have demonstrated a prototype nanoscale electronic switch that works like lightning-except for the speed. Their proof-of-concept experiments reported last week* demonstrate that nanoscale electrical switches can be built from self-assembled layers of organic molecules on silver wires. Potential applications range from a replacement technology for magnetic data storage to integrated circuit memory devices.







  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement
  • Lockheed Martin And FAA Reach Significant Milestone In Transformation Of Flight Services
  • Can UABC Take Russian Aircraft-Makers Out Of Spin

  • Toyota Anticipates Sharp Increase In Its Hybrid Sales
  • New Nanoscale Engineering Breakthrough Points To Hydrogen-Powered Vehicles
  • Geneva Show Hints At Green Fuel Jumble For Motorists
  • Students Enter Competition To Produce A Zero-Emissions Snowmobile

  • Harris Gets Follow-On Production Contract For Military Tactical Communications System
  • US Army Developing Better Access To Intelligence Data Through Distributed Common Ground System
  • General Dynamics Completes Milestone In Design Of US Navy Mobile User Objective System
  • Marines First To Try Out High-Tech Antenna

  • Dialogue Of The Deaf Over ABM Plans
  • US Missile Shield A Threat To Europe Unity Claims Chirac
  • Boeing Delivers 500th PAC-3 Missile Seeker To Lockheed Martin
  • USAF Hosts Pacific Command BMD Conference

  • Weeding Out The Risk Of Pest Plants
  • Mercury Contamination Of Fish Warrants Worldwide Public Warning
  • Russia Joins The Battle Over GM Products
  • Practice Of Farming Reaches Back Farther Than Thought

  • Relief Flows Into Indonesia Quake Area As Death Toll Revised Down
  • Global Disaster Bill Declines In 2006 Says Swiss Re
  • Death And Destruction After Powerful Indonesia Quake
  • Thousands Flee Indonesia Landslide Fearing New Calamity

  • Boeing Orbital Express to Demonstrate New On-Orbit Servicing Capability
  • Top 10 Materials Moments In History Announced
  • SPACEHAB Subsidiary Awarded $3 Million Contract
  • Austin Physicists Slow And Control Supersonic Helium Beam

  • Novel Salamander Robot Crawls Its Way Up The Evolutionary Ladder
  • Look Ma, No Hands, No Humans
  • Learning From Mistakes Next Challenge For Japanese Humanoids
  • Superbots In Action

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement