Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Old Star, New Trick
by Staff Writers
Washington DC (SPX) May 03, 2012


The team also examined data for this star from the public archives of several ground-based telescopes and were able to detect 45 elements. In addition to arsenic and selenium, they found rarely seen cadmium, tellurium, and platinum, all of which were produced by the r-process.

The Big Bang produced lots of hydrogen and helium and a smidgen of lithium. All heavier elements found on the periodic table have been produced by stars over the last 13.7 billion years. Astronomers analyze starlight to determine the chemical makeup of stars, the origin of the elements, the ages of stars, and the evolution of galaxies and the universe.

Now for the first time, astronomers have detected the presence of arsenic and selenium, neighboring elements near the middle of the periodic table, in an ancient star in the faint stellar halo that surrounds the Milky Way. Arsenic and selenium are elements at the transition from light to heavy element production, and have not been found in old stars until now.

Lead author of the Astrophysical Journal paper, Fellow Ian Roederer of the Carnegie Observatories explained: "Stars like our Sun can make elements up to oxygen on the periodic table. Other more massive stars can synthesize heavier elements, those with more protons in their nuclei, up to iron by nuclear fusion - bthe process in which atomic nuclei fuse and release lots of energy. Most of the elements heavier than iron are made by a process called neutron-capture nucleosynthesis.

"Although neutrons have no charge, they can decay into protons after they're in the nucleus, producing elements with larger atomic numbers. One of the ways that this method can work is by exposure to a burst of neutrons during the violent supernova death of a star.

We call this process the rapid process (r-process). It can produce elements at the middle and bottom of the periodic table - from zinc to uranium - in the blink of an eye."

Roederer, with co-author James Lawler, looked at an ultraviolet spectrum from the Hubble Space Telescope public archives to find arsenic and selenium in a 12 billion year-old halo star dubbed HD 160617.

These elements were forged in an even older star, which has long since disappeared, and then - like genes passed on from parent to infant - they were born into the star we see today, HD 160617."

The team also examined data for this star from the public archives of several ground-based telescopes and were able to detect 45 elements. In addition to arsenic and selenium, they found rarely seen cadmium, tellurium, and platinum, all of which were produced by the r-process.

This is the first time these elements have been detected together outside the Solar System. Astronomers cannot replicate the r-process in any laboratory since the conditions are so extreme. The key to modeling the r-process relies on astronomical observations.

"What I find exciting is that arsenic and selenium can be found in other stars, even ones like HD 160617 that we've been studying for decades," remarked Roederer. "Now that we know where to look, we can go back and study these elements in other stars.

Understanding the r-process helps us know why we find certain elements like barium on Earth, or understand why uranium is so rare."

The paper is published in the May 1, 2012 issue. Ian Roederer is supported by the Carnegie Institution through the Carnegie Observatories Fellowship. James Lawler is supported by NASA grant NNX10AN93G.

.


Related Links
Carnegie Observatories
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Cosmic Mirages Confirm Accelerated Cosmic Expansion
Tokyo, Japan (SPX) Apr 16, 2012
Quasars are very luminous objects powered by accretion of gas into supermassive black holes at the centers of distant galaxies. A quasar is typically located far away. Gravitational lensing is a phenomenon in which a distant object is split into two or more images due to the gravity of a massive foreground object. Toshifumi Futamase, Professor at Tohoku University says, "Prof. Oguri is a l ... read more


TIME AND SPACE
Bioluminescent technology for easy tracking of GMO

China's Bright Food says it will buy 60% of Weetabix

Drought leaves mark on Chile's wines

New study sheds light on debate over organic vs. conventional

TIME AND SPACE
Electric charge disorder: A key to biological order?

With new design, bulk semiconductor proves it can take the heat

Electron politics: Physicists probe organization at the quantum level

X-rays reveal molecular arrangements for better printable electronics

TIME AND SPACE
China Eastern to buy 20 Boeing 777-300s

JAL could go public again in July 2012: report

All Nippon Airways boosts profit, sales forecast

Slovenian adventurer ends eco-friendly trip around the world

TIME AND SPACE
Porsche says China sales drive profits sharply higher

Ford, GM sales skid as Chrysler, Toyota accelerate

Chinese tastes impact global car designs

Foreign carmakers 'pressed' to launch China brands

TIME AND SPACE
Canada firm promises Romania $30 bn in gold mine benefits

Brazil's Lula slams rich countries and IMF

US pushes China to allow yuan rise, speed reforms

China vows to boost imports ahead of US talks

TIME AND SPACE
Green groups say Indonesia deforestation ban 'weak'

Bolivian natives begin new march in road protest

Do urban 'heat islands' hint at trees of future?

Palms reveal the significance of climate change for tropical biodiversity

TIME AND SPACE
Report warns of rapid decline in US Earth observation capabilities

Lockheed Martin Completes Key Integration Milestone on GeoEye-2

NASA Image Gallery Highlights Earth's Changing Face

Risat-1 satellite raised to its final intended orbit

TIME AND SPACE
Nanotech gets boost from nanowire decorations

Single nanomaterial yields many laser colors

Creating nano-structures from the bottom up

Notre Dame paper examines nanotechnology-related safety and ethics problem




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement