Subscribe free to our newsletters via your
. GPS News .




WATER WORLD
Ocean acidification as a hearing aid for fish?
by Staff Writers
Miami FL (SPX) Apr 23, 2013


This is micro-CT imagery of a cobia larva head that has been filtered to view the entire skull (top image) and the more dense otolith (ear stone) structures (bottom image). Similar 3-D images were used by researchers to obtain the first measurements larval fish otoliths while still inside the skull. Credit: UM/RSMAS.

Ocean acidification, which occurs as CO2 is absorbed by the world's oceans, is known to negatively impact a wide variety of marine animals ranging from massive corals to microscopic plankton. However, there is much less information about how fish may be impacted by acidification, should carbon emissions continue to rise as a result of human activities.

In a new study published in the Proceedings of the National Academy of Sciences USA, University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Sean Bignami, along with National Oceanic and Atmospheric Administration (NOAA) scientists Ian Enochs, Derek Manzello, and UM Professors Su Sponaugle and Robert Cowen, report stunning new insight into the potential effects of acidification on the sensory function of larval cobia (Rachycentron canandum).

Cobia are large tropical fish that are highly mobile as they mature and are popular among recreational anglers.

Bignami and the team utilized 3D X-rays (micro-CT scans) similar to what a patient might receive at a hospital to determine that fish raised in low-pH seawater, simulating future conditions, have larger and more dense otoliths (ear stones) than those from higher-pH seawater.

Otoliths are distinct calcium carbonate structures within the inner ear of fishes that are used for hearing and balance. The changes resulted in up to a 58-percent increase in otolith mass, and when tested in a mathematical model of otolith function, showed a potential increase in hearing sensitivity and up to a 50-percent increase in hearing range.

"Increased hearing sensitivity could improve a fish's ability to use sound for navigation, predator avoidance, and communication. However, it could also increase their sensitivity to common background noises, which may disrupt the detection of more useful auditory information," said Bignami, who recently completed his PhD in Marine Biology and Fisheries at UM.

The study, a collaboration between UM and NOAA's Ocean Acidification Program at the Atlantic Oceanographic and Meteorological Laboratory in Miami, is the first to use micro-CT technology to examine otoliths while still inside the heads of the larval fish.

"This effect of ocean acidification represents a significant change to a key sensory system in fish. Although the ultimate ecological consequences still need to be determined, there is the potential for serious impact on important processes such as larval fish recruitment and fisheries replenishment in this species and perhaps other critical fisheries," Bignami added.

Article: Bignami S, Enochs I, Manzello D, Sponaugle S, Cowen RK (2013) Ocean acidification alters the otoliths of a pan-tropical fish species with implications for sensory function. Proceedings of the National Academy of Sciences USA. doi:10.1073/pnas.1301365110

.


Related Links
University of Miami Rosenstiel School of Marine and Atmospheric Science
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Massive amounts of charcoal enter the worlds' oceans
Bremen, Germany (SPX) Apr 23, 2013
Wild fires turn millions of hectares of vegetation into charcoal each year. An international team of researchers led by Thorsten Dittgar from the Max Planck Institute for Marine Microbiology in Bremen and Rudolf Jaffe from Florida International University's Southeast Environmental Research Center in Miami has now shown that this charcoal does not remain in the soil, as previously thought. ... read more


WATER WORLD
Europe cheese firms hope time is ripe for China

Fertility needs in high-yielding corn production

UBC researchers weed out ineffective biocontrol agents

Life is sweet for beekepers in Greece, but for how long?

WATER WORLD
Quantum computing taps nucleus of single atom

EU launches probe into suspected chipmaker cartel

Layered '2-D nanocrystals' promising new semiconductor

Dutch high-tech group ASML posts sharp Q1 slump

WATER WORLD
China Airlines in landmark Taiwan-Russia tie-up

Brazil's KCO-390 eyes markets as global alternative to C-130

Slovenian flyer embarks on eco-friendly trip to Arctic

Flight attendants decry new Homeland Security policy

WATER WORLD
Auto makers show off vehicles in key China market

GM by any other name? Car firms face brand puzzle in China

SUV popularity in China casts cloud over green-energy cars

Volvo Cars to post big Chinese losses for 2012: report

WATER WORLD
HSBC says to cut headcount by more than 1,000

ASEAN plans free trade pact with Hong Kong

Commodities slump on weak China data

Hong Kong port workers take strike to tycoon Li Ka-shing

WATER WORLD
Indonesia moves towards approving deforestation plan

Brazil urged to stop invading indigenous lands

New research challenges assumptions about effects of global warming on mountain tree line

Brazil's indigenous protest to defend ancestral lands

WATER WORLD
Google says Street View data now take in 50 countries

DMCii increases downlink capacity with Svalbard ground station facilities

Eye Exam for a Satellite

A look at the world explains 90 percent of changes in vegetation

WATER WORLD
Super-nanotubes: 'Remarkable' spray-on coating combines carbon nanotubes with ceramic

Nanocoating At ESA

New device could cut costs on household products, pharmaceuticals

Nanotechnology imaging breakthrough




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement