GPS News  
TIME AND SPACE
Nuclear puzzle may be clue to fifth force
by Staff Writers
Riverside CA (SPX) Aug 19, 2016


A schematic description of the experimental anomaly that Tanedo and his colleagues have investigated. Excited beryllium-8 nuclei can decay into their ground state while emitting electron-positron pairs. The results of the experiment suggest the presence of a new force particle, here labelled as X. Image courtesy UC Riverside.

In a new paper, University of California, Riverside theoretical physicist Flip Tanedo and his collaborators have made new progress towards unravelling a mystery in the beryllium nucleus that may be evidence for a fifth force of nature.

Earlier this year, an experiment in Hungary reported very unusual behavior in the decays of beryllium-8 nuclei. The experimental collaboration suggested that their results may come from the effects of a new force of nature.

If confirmed, this would have far-reaching consequences on fundamental physics including grand unification, dark matter and the experimental strategy for pushing the frontier of human knowledge.

Intrigued, Tanedo, an assistant professor at UC Riverside, and his collaborators - all theoretical physicists - decided to investigate further.

In an paper posted earlier this year, the team did the first theoretical analysis of the Hungarian team's interpretation, and showed how usual assumptions of how a fifth force would behave don't seem to work in this case because of the high energy physics experiments that would otherwise rule it out.

This represented the first steps to finding wiggle room for what it would take for the fifth force interpretation to work.

The just posted paper fleshes out the previous work and presents explicit examples of theories that could explain the Hungarian experiment without running afoul of the existing constraints mentioned in the earlier paper.

"We think that the Hungarian anomaly is interesting and our model is proof that consistent theories can be constructed," Tanedo said. "We're not saying that a fifth force has been discovered - only that we can pass the first consistency check.

"The next big check is for other experiments to confirm the anomaly. Our paper lays down the framework for how other types of experiments can definitely check or refute the original Hungarian result. If it ends up being real, that would be a huge deal in our field."

The team performed a systematic study of the Hungarian results including cutting-edge nuclear physics, theoretical self-consistency and cross-checks with results from particle accelerators. They also developed a theoretical scaffolding to understand whether the beryllium result can be consistent with known physics.

"Some features that look perfectly mundane are actually violently at odds with other experiments, while other features that look difficult to explain actually can be explained by relaxing pre-conceptions about how a new force should manifest itself," Tanedo said. "If this is a new force, it is not at all what we would have expected."

The results of the study, which have been submitted to the journal Physics Review D and posted on the arXiv.org preprint server, elucidate the subtleties of the experimental results and illuminate the path forward.

"We've thrown down the gauntlet, so to speak and shown how on-going high-energy physics experiments built for other purposes can be used to definitively confirm or refute this new force," Tanedo said. "We should know within the next few years."

The latest paper is called "Particle Physics Models for the 17 MeV Anomaly in Beryllium Nuclear Decays." In addition to Tanedo, the authors are Jonathan L. Feng, Bartosz Fornal, Iftah Galon, Jordan Smolinsky, Tim M.P. Tait, all of the University of California, Irvine, and Susan Gardner of the University of Kentucky.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
New material discovery allows study of elusive Weyl fermion
Ames IA (SPX) Aug 17, 2016
Researchers at the U.S. Department of Energy's Ames Laboratory have discovered a new type of Weyl semimetal, a material that opens the way for further study of Weyl fermions, a type of massless elementary particle hypothesized by high-energy particle theory and potentially useful for creating high-speed electronic circuits and quantum computers. Researchers created a crystal of molybdenum ... read more


TIME AND SPACE
Pesticide-resistant whitefly could 'devastate' many US crops

'Neonic' insecticides bad news for bees: study

Sequencing of fungal disease genomes may help prevent banana arma

Not all is green in Mexico City's Aztec garden district

TIME AND SPACE
See-through circuitry

Prototype chip could help make quantum computing practical

USC quantum computing researchers reduce quantum information processing errors

Liquid light switch could enable more powerful electronics

TIME AND SPACE
Cathay Pacific H1 profit drops amid China slowdown

Sidewinder three for three in F-35 test firings

Boeing contracted for work on U.S. Navy F/A-18 E/F and EA-18G aircraft

Leonardo-Finmeccanica resumes AW609 flight tests

TIME AND SPACE
Saab expands in Denmark

Obama admin unveils new truck fuel standards

Today's electric vehicles can make a dent in climate change

Ford putting self-driving cars in a fast lane

TIME AND SPACE
Samsung buys US luxury home appliance maker Dacor

Taiwan's Hon Hai gets Chinese green light for Sharp deal

Montreal march kicks off World Social Forum

Down but not out: fears ease over China's weaker yuan

TIME AND SPACE
A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

Early snowmelt reduces forests' atmospheric CO2 uptake

TIME AND SPACE
Map shows how Earth's vegetation has changed since 1980s

Iran, Roscosmos Discuss Price of Remote-Sensing Satellite Construction, Launch

Study Maps Hidden Water Pollution in U.S. Coastal Areas

Foraging strategies of smallest seals revealed in first ever satellite tracking study

TIME AND SPACE
Quantum dots with impermeable shell: A powerful tool for nanoengineering

Tailored probes for atomic force microscopes

Visible light superlens made from nanobeads

Smarter self-assembly opens new pathways for nanotechnology









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.