GPS News  
TIME AND SPACE
Novel approach to coherent control of a three-level quantum system
by Staff Writers
Basel, Switzerland (SPX) Aug 10, 2018

The oscillating cantilever influences the spin of the electrons in the nitrogen-vacancy centers (red arrows). The phase of the oscillator determined in which direction (clockwise or counter-clockwise) the spin rotates.

For the first time, researchers were able to study quantum interference in a three-level quantum system and thereby control the behavior of individual electron spins.

To this end, they used a novel nanostructure, in which a quantum system is integrated into a nanoscale mechanical oscillator in form of a diamond cantilever. Nature Physics has published the study that was conducted at the University of Basel and the Swiss Nanoscience Institute.

The electronic spin is a fundamental quantum mechanical property intrinsic to every electron. In the quantum world, the electronic spin describes the direction of rotation of the electron around its axis which can normally occupy two so-called eigenstates commonly denoted as "up" and "down."

The quantum properties of such spins offer interesting perspectives for future technologies, for example in the form of extremely precise quantum sensors.

Researchers led by Professor Patrick Maletinsky and PhD candidate Arne Barfuss from the Swiss Nanoscience Institute at the University of Basel report in Nature Physics a new method to control the spins' quantum behavior through a mechanical system.

For their experimental study, they combined such a quantum system with a mechanical oscillator. More specifically, the researchers employed electrons trapped in so-called nitrogen-vacancy centers and embedded these spins in single-crystalline mechanical resonators made from diamond.

These nitrogen-vacancy spins are special, in that they possess not only two, but three eigenstates, which can be described as "up," "down" and "zero." Using the special coupling of a mechanical oscillator to the spin, they showed for the first time a complete quantum control over such a three-level system, in a way not possible before.

Controlling three quantum states
In particular, the oscillator allowed them to address all three possible transitions in the spin and to study how the resulting excitation pathways interfere with each other.

This scenario, known as "closed-contour driving," has never been investigated so far but opens interesting fundamental and practical perspectives. For example, their experiment allowed for a breaking of time-reversal symmetry, which means that the properties of the system look fundamentally different if the direction of time is reversed than without such inversion. In this scenario, the phase of the mechanical oscillator determined whether the spin circled "clockwise" (direction of rotation up, down, zero, up) or "counter-clockwise."

Extending coherence
This abstract concept has practical consequences for the fragile quantum states. Similar to the well-known Schrodinger's cat, spins can be simultaneously in a superposition of two or three of the available eigenstates for a certain period, the so-called quantum coherence time.

If the three eigenstates are coupled to each other using the closed contour driving discovered here, the coherence time can be significantly extended, as the researchers were able to show. Compared to systems where only two of the three possible transitions are driven, coherence increased almost a hundredfold.

Such coherence protection is a key element for future quantum technologies and another main result of this work.

Applications for sensor technology
The work described here holds high potential for future applications. It is conceivable that the hybrid resonator-spin system could be used for the precise measurement of time-dependent signals with frequencies in the gigahertz range - for example in quantum sensing or quantum information processing.

For time-dependent signals emerging from nanoscale objects, such tasks are currently very difficult to address otherwise. Here the combination of spin and an oscillating system could provide helpful, in particular also because of the demonstrated protection of spin coherence.

Research paper


Related Links
University of Basel
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Renovations lead to big improvement at Nuclear Astrophysics Lab
Washington DC (SPX) Aug 09, 2018
In nature, the nuclear reactions that form stars are often accompanied by astronomically high amounts of energy, sometimes over billions of years. This presents a challenge for nuclear astrophysicists trying to study these reactions in a controlled, low-energy laboratory setting. The chances of re-creating such a spark without bombarding targets with high-intensity beams are unfathomably low. However, after recent renovations to its accelerator, one laboratory reported record-breaking performance. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Starbucks and Alibaba join forces as China coffee war brews

Deadly heatwaves threaten China's northern breadbasket

Cuba to study whether climate change is hurting sugar harvests

Record drought grips Germany's breadbasket

TIME AND SPACE
Tying down electrons with nanoribbons

Memory-processing unit could bring memristors to the masses

Extreme conditions in semiconductors

Reversing cause and effect is no trouble for quantum computers

TIME AND SPACE
Hong Kong's Cathay Pacific narrows losses in first half

NATO to revamp Albanian air base: PM

Chinese relatives frustrated by MH370 report

Boeing receives $186.2 million order for F/A-18 spare parts

TIME AND SPACE
Trump administration seeks rollback of Obama-era fuel efficiency rules

California fights back against EPA proposals on vehicles

Economists say dynamic tolls could ease traffic problems

EV charging in cold temperatures could pose challenges for drivers

TIME AND SPACE
Are tech titans teetering atop the market?

HSBC to pay $765m US fine over crisis-era conduct

State-owned China Tower trades flat on Hong Kong debut

China's factory-gate inflation tops forecasts in July

TIME AND SPACE
Mapping blue carbon in mangroves worldwide

Animal and fungi diversity boosts forest health

Tropical forests may soon hinder, not help, climate change effort

Fires spark biodiversity criticism of Sweden's forest industry

TIME AND SPACE
Radar better than weather balloon for measuring boundary layer

China launches high-resolution Earth observation satellite

Urban geophone array offers new look at northern Los Angeles basin

What is causing more extreme precipitation in the northeast?

TIME AND SPACE
Individual silver nanoparticles observed in real time

Researchers use nanotechnology to improve the accuracy of measuring devices

A new 'periodic table' for nanomaterials

Physicists uncover why nanomaterial loses superconductivity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.