Subscribe free to our newsletters via your
. GPS News .




WATER WORLD
Nothing fishy about swimming with same-sized mates
by Staff Writers
Heidelberg, Germany (SPX) Feb 15, 2013


File image.

Have you ever wondered why, and how, shoals of fish are comprised of fish of the same size? According to new research by Ashley Ward, from the University of Sydney in Australia, and Suzanne Currie, from Mount Allison University in Canada, fish can use a variety of different sensory cues to locate shoal-mates, but they are able to use chemical cues to find other fish of the same size as themselves. Using these cues, they can form a group with strength in numbers. The work is published online in Springer's journal, Behavioral Ecology and Sociobiology.

Forming groups is beneficial for animals. One important benefit is the reduction of individual risk from predators. Indeed when animals are in groups, predators are confronted by a number of almost identical prey animals, making it more challenging to select a target.

Dr. Ward said, "Fish typically form shoals with fish of the same size. The key question that motivated our study is this: How on earth does a fish know how big it is? For humans this is trivial - we can stand on a flat surface and see whether we're taller or shorter than someone, or we can look in a mirror. These options don't exist for fish, so how do they choose to associate with fish of the same size?"

The scientists explored which of their senses fish use both to assess the size of other individuals, and to determine how big they are themselves. They studied two freshwater shoaling fish species: three-spined stickleback and banded killfish. In a series of experiments, they exposed the fish to a variety of chemical cues - either from fish of the same species of varying sizes or a control, so-called 'blank' cue. Chemical cues are formed as fish constantly emit molecules into their surroundings.

Ward continued, "We know the sense of smell is well developed in fish and that they are sensitive to tiny differences in the chemical signature given off by others. So could they smell how big they are themselves and use this as a template to assess the size of others? It seems they can."

Both species of shoaling fish preferred the chemical cues of same-sized fish than those of larger or smaller fish from their own species. This suggests that the fish were able to determine their own size relative to other fish of the same species, primarily through chemical self-referencing.

"Using chemical cues to locate similarly sized fish of the same species in the wild promotes the formation of shoals, which creates confusion for predators as well as more coordinated, and potentially efficient, patterns of behavior for both activity and nutrition," concluded Ward.

Ward A and Currie S (2013). Shoaling fish can size-assort by chemical cues alone. Behavioral Ecology and Sociobiology; DOI 10.1007/s00265-013-1486-9

.


Related Links
Springer
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
New Zealand dolphin faces extinction, group warns
Wellington (AFP) Feb 14, 2013
Scientists have urged New Zealand to take immediate action to protect the critically endangered Maui's dolphin, amid warnings the marine mammal could become extinct by 2030. The animal, the world's smallest dolphin sub-species, is only found in waters off the North Island's west coast and experts estimate the adult population has dwindled to just 55, the US-based Society for Marine Mammalogy ... read more


WATER WORLD
X-rays reveal uptake of nanoparticles by soya bean crops

Widely used nanoparticles enter soybean plants from farm soil

Nitrogen from pollution, natural sources causes growth of toxic algae

Pioneering Finns share leftovers to cut waste

WATER WORLD
New materials may be computer breakthrough

Researchers create 'building block' of quanutm networks

European Investments in Advanced Computing Systems Deliver Results

A review of the rapidly evolving field of topological insulator hybrid structures

WATER WORLD
Boeing and Elbit Systems to Collaborate on Aircraft Defense Solutions

F-35A Completes 3-Year Clean Wing Flutter Testing Program

E-2D Advanced Hawkeye Approved For Full-Rate Production

Major fighter jet deal, trade dominate Hollande's India trip

WATER WORLD
Nissan profit tumbles on China, Europe woes

Japan's Suzuki sees April-December net profit rise 19%

Japan's Mazda swings back to profit

China auto sales hit record in January: industry group

WATER WORLD
Global gold demand falls in 2012: WGC report

Amazon seeks relaxation of India e-commerce rules

India IT exports picking up steam

Mercosur seeks Canada deal, but Cuba looms

WATER WORLD
Lungs of the planet reveal their true sensitivity to global warming

Southwest regional warming likely cause of pinyon pine cone decline

Tree die-off triggered by hotter temperatures

Taiwan's 'King of the Trees' fights for the forests

WATER WORLD
LDCM 'Doing Great' in Orbit

US launches Earth observation satellite

NightPod Images Bring Earth to Light From Space Station

Landsat Data Continuity Mission Awaits Liftoff

WATER WORLD
Giving transplanted cells a nanotech checkup

Boston College researchers' unique nanostructure produces novel 'plasmonic halos'

Using single quantum dots to probe nanowires

A new genre of 'intelligent' micro- and nanomotors




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement