GPS News  
TECH SPACE
Non-metal catalyst splits hydrogen molecule
by Staff Writers
Frankfurt, Germany (SPX) Oct 31, 2016


Chemists at Goethe University have now developed a new catalyst for the activation of hydrogen by introducing boron atoms into a common organic molecule. Image courtesy GU. For a larger version of this image please go here.

Hydrogen (H2) is an extremely simple molecule and yet a valuable raw material which as a result of the development of sophisticated catalysts is becoming more and more important. In industry and commerce, applications range from food and fertilizer manufacture to crude oil cracking to utilization as an energy source in fuel cells.

A challenge lies in splitting the strong H-H bond under mild conditions. Chemists at Goethe University have now developed a new catalyst for the activation of hydrogen by introducing boron atoms into a common organic molecule. The process, which was described in the Angewandte Chemie journal, requires only an electron source in addition and should therefore be usable on a broad scale in future.

The high energy content of the hydrogen molecule meets with a particularly stable bonding situation. It was Paul Sabatier who in 1897 detected for the first time that metals are suitable catalysts for splitting the molecule and harnessing elementary hydrogen for chemical reactions.

In 1912 he was awarded the Nobel Prize for Chemistry for this important discovery. The hydrogenation catalysts mostly used today contain toxic or expensive heavy metals, such as nickel, palladium or platinum. Only ten years ago non-metal systems based on boron- and phosphorous compounds were discovered which allow comparable reactions.

"My doctoral researcher, Esther von Grotthuss, has achieved yet another major simplification of the non-metal strategy which requires only the boron component", says Professor Matthias Wagner from the Institute of Inorganic and Analytical Chemistry of Goethe University Frankfurt.

"What we additionally need is just an electron source. In the laboratory we chose lithium or potassium for this. When put into practice in the field, it should be possible to substitute this with electrical current."

In order to explain the intricacies of hydrogen activation above and beyond experimental findings, quantum chemical calculations were carried out in cooperation with Professor Max Holthausen (Goethe University Frankfurt).

Detailed knowledge of the reaction process is very important for the system's further expansion. The objective lies not only in replacing transition metals in the long term but also in opening up the possibility for reactions which are not possible with conventional catalysts.

The chemists in Frankfurt consider that especially substitution reactions are highly promising which permit easy access to compounds of hydrogen with other elements. Expensive and potentially hazardous processes are still mostly used for such syntheses.

For example, the simplified production of silicon-hydrogen compounds would be extremely attractive for the semiconductor industry.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goethe University Frankfurt
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
How water flows near the superhydrophobic surface
Moscow, Russia (SPX) Oct 24, 2016
Water (and other liquids) has an unusual property when it flows closely to some specially designed surfaces: its speed isn't equal to zero even in the layer that directly touches the wall. This means that liquid doesn't adhere to the surface, but instead slides along it. Such an effect is called hydrodynamic slip and it was first described more than 200 years ago. However, at that time it hasn't ... read more


TECH SPACE
Report reveals a big dependence on freshwater fish for global food security

Australia's richest woman ups bid for cattle empire

High levels of algae toxins in San Francisco Bay shellfish

How food affects political regimes

TECH SPACE
Making silicon-germanium core fibers a reality

A new class of materials could realize quantum computers

Flexible optical design method for superconducting nanowire single-photon detectors

Exploring defects in nanoscale devices for possible quantum computing applications

TECH SPACE
Britain backs Heathrow airport expansion despite splits

U.K. Typhoon enhancements enter operational evaluation phase

Joint Strike Fighter an instrument of Power Projection, not just another fighter

Death sentence for Heathrow demolition village

TECH SPACE
Chinese ride-share king Didi Chuxing could go global

Long-vanished German car brand joins electric race

US judge approves massive VW emissions settlement

Driverless truck from Uber's Otto makes Colorado beer delivery

TECH SPACE
Belgium's Wallonia misses EU 'ultimatum' on Canada trade pact

Belgian leaders near consensus for EU-Canada trade deal

Indian washermen keep tradition alive despite daily grind

EU-Canada trade summit 'still possible' despite holdout Belgium

TECH SPACE
Brazil land grab threatens isolated tribes: activists

The fight against deforestation: Why are Congolese farmers clearing forest?

Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests

TECH SPACE
NASA satellite sees sulfur dioxide diffuse across northern Iraq

The future of radar - scientific benefits and potential of TerraSAR-X and TanDEM-X

FSU geologist explores minerals below Earth's surface

Airbus Defence and Space-built PeruSAT-1 delivers first images

TECH SPACE
A tiny machine

Nanoantenna lighting-rod effect produces fast optical switches

Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.