GPS News  
FARM NEWS
No more brown apples
by Staff Writers
Vienna, Austria (SPX) Nov 17, 2015


Yet these apple slices are white -- but soon they will lose their 'fresh' color and turn brown by tyrosinases. Image courtesy University of Vienna. For a larger version of this image please go here.

Everybody knows this phenomenon: After slicing an apple, it loses its appetising white colour very quickly, which does not only scare off children. Although browned fruit is not harmful, we unwillingly eat "old-looking" fruit and throw away huge quantities of fresh products each year.

The reason for this ugly colouring is a chemical reaction, which is due to the catalysis caused by the enzyme tyrosinase. Actually, this "browning" is a defence mechanism of plants.

"There are caterpillars which are starving to death with a full stomach, because they are no longer able to digest the material which is altered by the tyrosinase", explains Matthias Pretzler of the Department of Biophysical Chemistry at the University of Vienna, who was involved in the structure elucidation of the first plant tyrosinase together with his colleagues and teamleader Annette Rompel. The research results have now been published in the internationally-renowned journal "Angewandte Chemie" (Applied Chemistry).

From mushroom to the walnut leaf
The tyrosinase, which is a metal-containing enzyme catalysing the oxidation of phenols, has been explored by Annette Rompel for over 20 years. It is also involved in the synthesis of human melanin and therefore responsible for human "browning" as well.

"In the 1990s we were far away from handling the enzyme, but with the development of modern chromatographic and crystallographic methods there are better opportunities available to us today", says Annette Rompel, who already tried to isolate and purify the enzyme from walnut leaves.

After the successful characterisation and crystallisation of mushroom tyrosinase in 2014, the walnut leaf is the centre of her research nowadays. "Walnut leaves make the skin become brown, which proves that they contain a high concentration of the enzyme and represent an attractive source for our research", she explains.

Old theory is replaced by new findings
On the basis of the crystallisation of tyrosinase from walnut leaves, the researchers disproved a common theory. The tyrosinase belongs to the enzyme class of polyphenol oxidases. It catalyses the first two reactions (hydroxylation and oxidation) of the melanin biosynthesis. "Besides the tyrosinase, the so-called catechol oxidase is found in plants, which, however, is only able to catalyse the second reaction (oxidation)", says Matthias Pretzler.

Both enzymes are very similar as far as the structure is concerned. "This raises the question how the results of the individual reactivities differ from each other", adds Aleksandar Bijelic.

It was previously assumed that tyrosinase differs from catechol oxidase by one single amino acid, which is virtually positioned over the active centre like a "plug" and thus responsible for the different reactivities. After the scientists of the University of Vienna have crystallised the first plant tyrosinase, they discovered that both enzyme classes contain this "plug" in plants. "Our conclusion is that we have to change the perspective", says the PhD student.

Developing new perspectives
Accordingly, the team shifted its focus from the active site to more distant structural regions of the enzyme. "Our assumption is that some sort of pre-orientation has to take place in order to allow a substrate to gather the active site despite the presence of the 'plug' so that it can be finally converted by the tyrosinase", says the project leader.

Thus, the scientists "zoomed out" a little bit and focused towards the amino acids at the second shell, which is located at the entrance of the active site. "In fact, we learned that these amino acids play a more important role than previously assumed."

Understanding the underlying principle
"For many years, researchers studying tyrosinases found themselves confronted with the question: Why do you always obtain unexpected reaction products? Even if you feed it with the same substrate, different products can be obtained", says Annette Rompel. Her goal is it to understand the principle behind this, i.e. how the enzyme, namely tyrosinase, actually functions. If this succeeds, it will be possible to block the browning reaction in fruits.

Suppressing the activation of browning
The research group has already started its next project in order to address exactly this issue and to find a harmless method to control the tyrosinase. For this purpose, they have to find out how the enzyme is actually activated. "We want to find the enzyme that 'switches' the tyrosinase from latent to active", explains the scientist.

"If we are successful in suppressing the first activating step, this will be an enormous success for science", adds Annette Rompel: "It would mean that a banana would not turn brown anymore if you squeezed it in your bag." Still, it would of course rot. "It will most probably rot even faster", concludes Matthias Pretzler.

Publication in "Angewandte Chemie" A. Bijelic, M. Pretzler, C. Molitor, F. Zekiri, A. Rompel: The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of "Substrate-Guiding Residues" for Enzymatic Specificity. Published online October 16, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vienna
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Wheat disease-resistance gene identified, potential to save billions
Sydney, Australia (SPX) Nov 16, 2015
A gene that can prevent some of the most important wheat diseases has been identified--creating the potential to save more than a billion dollars in lost production in Australia alone each year. In a global collaboration including the University of Sydney's Plant Breeding Institute (PBI), the CSIRO, CIMMYT (Mexico), University of Newcastle, Chinese Academy of Sciences and the Norwegian Uni ... read more


FARM NEWS
Early farmers exploited beehive products at least 8,500 years ago

Cattle dying in South Africa as drought deepens

No more brown apples

Emissions set to soar as love of steak takes off in Asia

FARM NEWS
A new slant on semiconductor characterization

Miniaturizable magnetic resonance

Scientists design a full-scale architecture for a quantum computer in silicon

Engineers reveal record-setting flexible phototransistor

FARM NEWS
Telephonics equipping new P-8 Poseidons with IFF system

U.S. and Cambodian navies begin CARAT 2015 training

World nations reach landmark deal on using satellites to track flights

Piaggio Aerospace rolls out new multi-role turboprop

FARM NEWS
Human roadblock for Japanese firms developing autonomous cars

Madrid sets speed, parking restrictions to fight pollution

GM to sell Chinese-made cars in the US: report

BMW buys Chinese firm to drive car leasing business

FARM NEWS
Pakistan army chief heads to US as pressure grows over Afghanistan

China splurges on world's biggest online shopping spree

Pakistan hands land over to China for economic zone

Shanghai free trade zone director under investigation

FARM NEWS
Scientists date the origin of the cacao tree to 10 million years ago

Increased deforestation could substantially reduce Amazon basin rainfall

Large landowners key to slowing deforestation in Brazil

10 Cambodians arrested over illegal logging patrol murders

FARM NEWS
RapidScat Celebrates One-Year Anniversary

Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

Curtiss-Wright and Harris bring digital map solutions to rugged systems

FARM NEWS
Rice makes light-driven nanosubmarine

Novel 'crumpling' of hybrid nanostructures increases SERS sensitivity

Researchers build nanoscale autonomous walking machine from DNA

New way of computing with interaction-dependent nanomagnets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.