GPS News  
ENERGY TECH
Next-generation batteries take major step toward commercial viability
by Staff Writers
Austin TX (SPX) Apr 29, 2020

This battery cycler in Arumugam's Manthiram's lab can test multiple coin cells at the same time. Credit: University of Texas at Austin.

Lithium-sulfur batteries have been hailed as the next big step in battery technology, promising significantly longer use for everything from cellphones to electric vehicles on a single charge, while being more environmentally sustainable to produce than current lithium-ion batteries. However, these batteries don't last as long as their lithium-ion counterparts, degrading over time.

A group of researchers in the Cockrell School of Engineering at The University of Texas at Austin has found a way to stabilize one of the most challenging parts of lithium-sulfur batteries, bringing the technology closer to becoming commercially viable. The team's findings, published in Joule, show that creating an artificial layer containing tellurium, inside the battery in-situ, on top of lithium metal, can make it last four times longer.

"Sulfur is abundant and environmentally benign with no supply chain issues in the U.S.," said Arumugam Manthiram, a professor of mechanical engineering and director of the Texas Materials Institute. "But there are engineering challenges. We've reduced a problem to extend the cycle life of these batteries."

Lithium is a reactive element that tends to break down other elements around it. Every cycle of a lithium-sulfur battery - the process of charging and discharging it - can cause mossy, needle-like deposits to form on the lithium-metal anode, the negative electrode of the battery. This starts a reaction that can lead to the battery's overall degradation.

The deposits break down the electrolyte that shuttles lithium ions back and forth. This can trap some of the lithium, keeping the electrode from delivering the full power necessary for the ultra-long use the technology promises. The reaction can also cause the battery to short-circuit and potentially catch fire.

The artificial layer formed on the lithium electrode protects the electrolyte from being degraded and reduces the mossy structures that trap lithium from forming during charges.

"The layer formed on lithium surface allows it to operate without breaking down the electrolyte, and that makes the battery last much longer," said Amruth Bhargav, who, along with fellow graduate student Sanjay Nanda, co-authored the paper.

Manthiram added that this method can be applied to other lithium- and sodium-based batteries. The researchers have filed a provisional patent application for the technology.

"The stabilizing layer is formed by a simple in-situ process and requires no expensive or complicated pre-treatment or coating procedures on the lithium-metal anode," Nanda said.

Solving the instability of this part of the battery is key to extending its cycle life and bringing about wider adoption. Manthiram said that lithium-sulfur batteries are currently best suited for devices that need lightweight batteries and can run for a long time on a single charge and don't require a large number of charge cycles, such as drones.

But they have the potential to play an important role in extending the range of electric vehicles and increased renewable energy adoption.

Both the positive and negative electrodes in lithium-sulfur batteries hold 10 times as much charge capacity as the materials used in today's lithium-ion batteries, Manthiram said, which means they can deliver much more use out of a single charge.

Sulfur is widely available as a byproduct from the oil and gas industry, making the batteries inexpensive to produce. Sulfur is also more environmentally friendly than the metal oxide materials used in lithium-ion batteries.

Research paper


Related Links
University Of Texas At Austin
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Microwaves power new technology for batteries, energy
West Lafayette IN (SPX) Apr 24, 2020
New battery technology involving microwaves may provide an avenue for renewable energy conversion and storage. Purdue University researchers created a technique to turn waste polyethylene terephthalate, one of the most recyclable polymers, into components of batteries. "We use an ultrafast microwave irradiation process to turn PET, or polyethylene terephthalate, flakes into disodium terephthalate, and use that as battery anode material," said Vilas Pol, a Purdue associate professor of chemic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
No time to waste to avoid future food shortages

Hunter-gatherers developed culturally distinct cuisines 7,000 years ago

Americans spend more on wasted food than gas, clothes, taxes

China fish farmers harvest troubled waters with floating villages

ENERGY TECH
Reducing the carbon footprint of artificial intelligence

Quantum research unifies two ideas offering an alternative route to topological superconductivity

The future of semiconductors is clear

Wiring the quantum computer of the future

ENERGY TECH
Lockheed expects slowed production due to COVID-19, F-35 to be hit hardest

Fast-track training for pilots who never leave the ground

Germany opts for US-European solution to replace fighter jet fleet

Air Force saves $7M on fuel for KC-135 by turning windshield wipers vertical

ENERGY TECH
Linking self-driving cars to traffic signals might help pedestrians give them the green light

Could shrinking a key component help make autonomous cars affordable?

Renault shifts to all-electric cars for China

VW loses 'damning' dieselgate class lawsuit in UK

ENERGY TECH
EU commissioner slams Europe's 'morbid dependency' on China

Could virus crisis kill debt-laden US Postal Service?

Asia virus latest: India curbs foreign takeovers; Japanese tulips snipped

China suffers historic contraction as virus paralyses economy

ENERGY TECH
Plant diversity in Europe's forests is on the decline

Ancient long-lived pioneer trees store majority of carbon in tropical forests

Drylands to become more abundant, less productive due to climate change

The young Brazilians fighting for the Amazon

ENERGY TECH
Locked-down Delhi revels in fresh air and blue sky

SwRI awarded $12.8M to develop space weather instrument

COVID-19: Aeolus and weather forecasts

Nine reasons we're grateful to live on Earth

ENERGY TECH
Magnetic nanoparticles help researchers remotely release adrenal hormones

New DNA origami motor breaks speed record for nano machines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.