GPS News  
TECH SPACE
Next-gen steel under the microscope
by Staff Writers
Brisbane, Australia (SPX) Mar 17, 2017


Eastern span of the San Francisco-Oakland Bay Bridge. The old and the new bridge, as seen at night from Yerba Buena Island to Oakland (mid-September 2013). The inset in the top left hand corner shows V Vanadium and 2H, Deuterium a hydrogen isotope (1 proton plus 1 neutron and 1 electron) as a Hydrogen substitute. Image courtesy Frank Schulenburg.

Next-generation steel and metal alloys are a step closer to reality, thanks to an international research project involving a University of Queensland scientist.

The work could overcome the problem of hydrogen alloy embrittlement that has led to catastrophic failures in major engineering and building projects.

UQ Centre for Microscopy and Microanalysis Director Professor Roger Wepf said the problem had been recognised for almost 140 years.

"The current generation of these metals can suffer hydrogen embrittlement, where they become brittle and fracture due to the accidental introduction of hydrogen during manufacture and processing," he said.

"A major example of alloy embrittlement occurred in 2013, when bolts in the eastern span of the San Francisco-Oakland bridge failed tests during construction."

Professor Wepf said hydrogen was extremely volatile and diffused quickly.

"Our research collaboration has, for the first time, localised and visualised hydrogen in steels and alloys," he said.

"This is essential for the development of new alloys with greater endurance."

"We have shown that it's possible to localise hydrogen at atomic resolution - at the scale of a single atom - or at a nanometre (less than one-billionth of a metre) scale by combining different technologies in a closed and protected workflow.

"These include state-of-the-art cryo electron microscopy freezing techniques, low-temperature sample preparation in a cryo focused ion beam microscope, and inert cryo-transfer.

TECH SPACE
Groundbreaking process for creating ultra-selective separation membranes
Minneapolis MN (SPX) Mar 17, 2017
A team of researchers, led by the University of Minnesota, has developed a groundbreaking one-step, crystal growth process for making ultra-thin layers of material with molecular-sized pores. Researchers demonstrated the use of the material, called zeolite nanosheets, by making ultra-selective membranes for chemical separations. These new membranes can separate individual molecules based o ... read more

Related Links
University of Queensland
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Greenhouse gases: First it was cows now it's larvae

What makes farmers try new practices?

How improved valves let grasses 'breathe,' cope with climate change

Molecular mechanism responsible for blooming in spring identified

TECH SPACE
Ultrafast measurements explain quantum dot voltage drop

Bushwhacking into Unexplored Transistor Territories

Bonding chips using inkjet printers

Liquid fuel for future computers

TECH SPACE
Lockheed Martin to recoat U.S. Air Force F-22s

Boeing gets $3.2B for Apache sales to Saudi Arabia

U.S. Army looks to Air Force for future air defenses

Reduce Fuel Burn With a Dose of BLI

TECH SPACE
China's Geely opens UK plant for electric London taxis

Intel deal may fuel Israel's rise as builder of car brains

More gas guzzlers due to Trump? Not necessarily

German prosecutors search Audi offices over 'dieselgate'

TECH SPACE
G20 finance ministers to meet under America First shadow

Unforeseen impacts of the fair trade movement

Merkel, Xi defend free trade ahead of G20 meet

Labour drought in Europe's east as workers go west

TECH SPACE
Late US billionaire's record land gift lays Chile row to rest

Did humans create the Sahara desert?

Louisiana wetlands hurting from accelerated sea level rise

Huge swathe of Australian mangroves 'die of thirst'

TECH SPACE
NASA Satellite Identifies Global Ammonia 'Hotspots'

From the butterfly's wing to the tornado: Predicting turbulence

NASA says goodbye to a Pathfinder Earth Satellite after 17 years

Scientists consider how city skylines influence weather

TECH SPACE
Scientists created nanopowders for the synthesis of new aluminum alloys

Researchers develop new method to program nanoparticle organization in polymer thin films

3-D printing turns nanomachines into life-size workers

Light-controlled gearbox for nanomachines









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.