Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
New 'transient electronics' disappear when no longer needed
by Staff Writers
New Orleans LA (SPX) Apr 11, 2013


Illustration only.

Scientists have described key advances toward practical uses of a new genre of tiny, biocompatible electronic devices that could be implanted into the body to relieve pain or battle infection for a specific period of time, and then dissolve harmlessly.

These "transient electronics," described here at the 245th National Meeting and Exposition of the American Chemical Society (ACS), the world's largest scientific society, could have other uses, including consumer electronics products with a pre-engineered service life.

John Rogers, Ph.D., who led the research, explained that it arises from a view of electronics fundamentally different from the mindset that has prevailed since the era of electronic "chips," integrated circuits and microprocessors, which dawned almost 50 years ago.

"The goal of the electronics industry has always been to build durable devices that last forever with stable performance," Rogers explained. "But many new opportunities open up once you start thinking about electronics that could disappear in a controlled and programmable way."

Those opportunities, he added, include cell phones and other mobile devices that stop working on a timetable corresponding to the time for upgrading to a new model. Instead of adding to the $50 million of so-called e-waste generated every year, the devices would simply break down.

Medical implants that are only needed for a few weeks could just disappear, without requiring an extra surgery to remove them from the body. And no one would have to retrieve dozens of transient water-quality sensors from a river undergoing water quality monitoring. They would dissolve without a trace and without harm to the environment.

Although other researchers have developed so-called bioresorbable medical devices that disappear over time in the body, Rogers' team at the University of Illinois at Urbana-Champaign is the first to produce such broadly applicable technology, which has many more potential uses than other devices.

The scientists have designed transient electronics as temperature sensors, solar cells and miniature digital cameras, for instance. Moreover, previous bioresorbable devices were made of different materials that only partially dissolved, leaving behind residues, and they did not perform as well as Rogers' current devices.

The electronics are enclosed in material that dissolves completely after a certain period of time when exposed to water or body fluids, somewhat like dissolvable sutures. By altering the number of layers of the wrapping, scientists can define everything about how the device will dissolve in the body or in the environment, including its overall lifetime, said Rogers.

The devices perform just as well as conventional electronics and function normally until the encapsulating layer disappears. Once that happens, it takes about 30 minutes for the electronic connections to dissolve away, and the device stops working. Current versions of the devices remain operable for a few weeks. Rogers' team is researching ways to make devices that last a few years.

In his ACS report, Rogers described key advances in the technology. One advance established for the first time that transient electronic devices, implanted into laboratory mice, actually work in battling infections and do, indeed, dissolve when done.

Rogers' team previously only thought that would happen. The devices produced localized heat, which prevented bacterial growth and surgery-related infections from developing in the mice. The findings add to the confidence that similar devices can be designed to reduce pain by stimulating certain nerves or facilitate bone growth or wound healing.

The scientists also reported progress in making the devices with conventional manufacturing processes instead of meticulously building the electronics one-by-one by hand in a laboratory. "It's a step toward producing these devices with the kind of manufacturing processes that are already in wide use for traditional electronics like silicon-based microprocessors and memory technology," said Rogers.

Another advance involved the materials for making and powering the devices without an external electricity source. Rogers said, for instance, that the latest transient electronic devices incorporate zinc oxide, which is "piezoelectric."

It means that thin, flexible devices made with zinc oxide could produce electricity when bent or twisted - perhaps by movement of muscles in the body, pulsation of blood vessels or beating of the heart.

.


Related Links
American Chemical Society
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
KAIST develops a low-power 60 GHz radio frequency chip for mobile devices
Daejeon, South Korea (SPX) Apr 06, 2013
As the capacity of handheld devices increases to accommodate a greater number of functions, these devices have more memory, larger display screens, and the ability to play higher definition video files. If the users of mobile devices, including smartphones, tablet PCs, and notebooks, want to share or transfer data on one device with that of another device, a great deal of time and effort a ... read more


CHIP TECH
Residents in China ordered to cull birds: media

Cuba faces vast land losses as sea levels rise

Got baby milk? Chinese dealers strip shelves worldwide

Population boom poses interconnected challenges of energy, food, water

CHIP TECH
Redesigned Material Could Lead to Lighter, Faster Electronics

A step toward optical transistors?

New 'transient electronics' disappear when no longer needed

World Record Silicon-based Millimeter-wave Power Amplifiers

CHIP TECH
Israel boosts air force 'pack of leopards

More delays in Brazil air force upgrades

Fasten seatbelts for bumpier flights: climate study

Hong Kong airbridge collapse rips off plane door

CHIP TECH
China March auto sales hit record high: group

Yamaha plans $500 bike in India, eyes exports to China

US announces stricter gasoline standards

Japan venture to bring electric tuk-tuks to Asia

CHIP TECH
Santos: Latin America's top port faces logistical woes

China records March trade deficit of $880 mn

Talks fail to break Hong Kong port strike

France's Bourbon in $1.5 bn vessel deal with China's ICBC

CHIP TECH
Activist silenced as China island forests destroyed

SFU researchers help unlock pine beetle's Pandora's box

Russian activists angry after attacked journalist's death

Russian forest campaigner dies after 2008 attack

CHIP TECH
Ball Aerospace Begins Integration Phase for DigitalGlobe's WorldView-3 Satellite

RADARSAT-1 Malfunction

Satellite Sandwich Technique Improves Analysis of Geographical Data

National Security Drives Growth for GIS Professionals in Government Sector

CHIP TECH
Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Imaging methodology reveals nano details not seen before

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement