GPS News  
ICE WORLD
New study reveals local drivers of amplified Arctic warming
by Staff Writers
Ulsan, South Korea (SPX) Jan 21, 2019

Amplification factor of observed surface temperatures relative to the global mean surface temperature from 1951 to 2017. The observations show a clear enhancement of warming In the Arctic region and across Siberia, Northern Canada and Alaska.

The Artic experienced an extreme heat wave during the February 2018. The temperature at the North Pole has soared to the melting point of ice, which is about 30-35 degrees (17-19 Celsius) above normal.

There have also been recent studies, indicating the mass of Arctic glaciers has declined significantly since the 1980's by more than 70%. These sudden climate changes affected not just the Arctic regions, but also the water, food, and energy security nexus throughout the globe. This is why climate scientists from around the world are paying increasing attention to this accelerated warming pattern, commonly referred to as 'Arctic Amplification'.

An international team of researchers, including Professor Sarah Kang and DoYeon Kim in the School of Urban and Environmental Engineering at UNIST, has unveiled that local greenhouse gas concentrations appear to be attributable to Arctic Amplification.

Published in the November 2018 issue of Nature Climate Change, their study on the cause of Arctic Amplification shows that local greenhouse gas concentrations, and Arctic climate feedbacks outweigh other processes.

This study has been led by Assistant Project Leader Malte F. Stuecker from the IBS Center for Climate Physics (ICCP) in Busan, South Korea and participated by researchers around the globe, including United States, Austrailia, and China.

Long-term observations of surface temperatures show an intensified surface warming in Canada, Siberia, Alaska and in the Arctic Ocean relative to global mean temperature rise. Arctic Amplification is consistent with computer models, simulating the response to increasing greenhouse gas concentrations. However, the underlying physical processes for the intensified warming still remain elusive.

Using complex computer simulations, the scientists were able to disprove previously suggested hypotheses, that emphasized the role of transport of heat from the tropics to the poles as one of the key contributors to the amplified warming in the Arctic.

"Our study clearly shows that local carbon dioxide forcing and polar feedbacks are most effective in Arctic amplification compared to other processes", says Assistant Project Leader Malte F. Stuecker, the corresponding author of the study.

Increasing anthropogenic carbon dioxide (CO2) concentrations trap heat in the atmosphere, which leads to surface warming. Regional processes can then further amplify or dampen this effect, thereby creating the typical pattern of global warming.

In the Arctic region, surface warming reduces snow and sea-ice extent, which in turn decreases the reflectivity of the surface. As a result, more sunlight can reach the top of layers of the soil and ocean, leading to accelerated warming. Furthermore, changes in Arctic clouds and of the vertical atmospheric temperature profile can enhance warming in the polar regions.

In addition to these factors, heat can be transported into the Arctic by winds.

"We see this process for instance during El Nino events. Tropical warming, caused either by El Nino or anthropogenic greenhouse emissions, can cause global shifts in atmospheric weather patterns, which may lead to changes in surface temperatures in remote regions, such as the Arctic", said Kyle Armour, co-author of the study and professor of Atmospheric Sciences and Oceanography at the University of Washington.

Moreover, global warming outside the Arctic region will also lead to an increase in Atlantic Ocean temperatures. Ocean currents, such as the Gulf Stream and the North Atlantic drift can then transport the warmer waters to the Arctic ocean, where they could melt sea ice and experience further amplification due to local processes.

To determine whether tropical warming, atmospheric wind and ocean current changes contribute to future Arctic Amplification, the team designed a series of computer model simulations.

"By comparing simulations with only Arctic CO2 changes with simulations that apply CO2 globally, we find similar Arctic warming patterns. These findings demonstrate that remote physical processes from outside the polar regions do not play a major role, in contrast to previous suggestions", says co-author Cecilia Bitz, professor of Atmospheric Sciences at the University of Washington.

In the tropics - fueled by high temperature and moisture - air can easily move up to high altitudes, meaning the atmosphere is unstable. In contrast, the Arctic atmosphere is much more stable with respect to vertical air movement. This condition enhances the CO2-induced warming in the Arctic near the surface. In the tropics - due to the unstable atmosphere - CO2 mostly warms the upper atmosphere and energy is easily lost to space. This is opposite to what happens in the Arctic: Less outgoing infrared radiation escapes the atmosphere, which further amplifies the surface-trapped warming.

"Our computer simulations show that these changes in the vertical atmospheric temperature profile in the Arctic region outweigh other regional feedback factors, such as the often-cited ice-albedo feedback" says Malte Stuecker.

The findings of this study highlights the importance of Arctic processes in controlling the pace at which sea-ice will retreat in the Arctic Ocean. The results are also important to understand how sensitive polar ecosystems, Arctic permafrost and the Greenland ice-sheet will respond to Global Warming.

Research Report: Stuecker, M. F., C. M. Bitz, K. C. Armour, C. Proistosescu, S. M. Kang, S.-P. Xie, D. Kim, S. McGregor, W. Zhang, S. Zhao, W. Cai, Y. Dong, and F.-F. Jin, "Polar amplification dominated by local forcing and feedbacks", Nature Climate Change (2018), doi:10.1038/s41558-018-0339-y


Related Links
Ulsan National Institute of Science and Technology
Beyond the Ice Age


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ICE WORLD
Scientists identify two new species of fungi in retreating Arctic glacier
Tokyo, Japan (SPX) Jan 17, 2019
Two new species of fungi have made an appearance in a rapidly melting glacier on Ellesmere Island in the Canadian Arctic, just west of Greenland. A collaborative team of researchers from Japan's National Institute of Polar Research, The Graduate University for Advanced Studies in Tokyo, Japan, and Laval University in Quebec, Canada made the discovery. The scientists published their results on DATE in two separate papers, one for each new species, in the International Journal of Systematic and Evol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
RUDN pedologists found out a correct combination of nitrogen fertilizers and plastic mulch

Ancient quinoa found in Ontario, suggesting early links between indigenous groups

60 percent of coffee varieties face 'extinction risk'

France takes Roundup weed-killer off market after court ruling

ICE WORLD
Researchers discover molecules 'spin flip' from magnetic to non-magnetic forms dynamically

Theoreticians investigate puzzling phenomenon in a quantum gas

Five thousand times faster than a computer

Arbitrary quantum channel simulation for a superconducting qubit

ICE WORLD
Britain declares it's F-35B fighters are ready for combat

South Korea to receive first two F-35A stealth jets in March

France orders 28 upgraded Rafale warplanes for $2.3 billion

U.S. Air Force awards Lockheed $131.6M for C-5 sustainment

ICE WORLD
Tesla recalls more than 14,000 cars in China over Takata airbags

World first integrated driverless technology trial launched in Australia

Keeping roads in good shape reduces greenhouse gas emissions, Rutgers-led study finds

Intel vet takes wheel of self-driving car startup Zoox

ICE WORLD
From sizzle to fizzle: Hong Kong's red-hot property market cools

Pound holds its ground after May's Brexit battering

Davos assembly faces Brazilian populism and Brexit

Bolsonaro to headline Davos meet in Trump's absence

ICE WORLD
Model Bundchen 'surprised' by Brazil minister criticism on environment

Bulgaria activists win case to save UNESCO-listed forest

Water, not temperature, limits global forest growth as climate warms

Beech trees are dying, and nobody's sure why

ICE WORLD
Satellogic signs agreement with CGWIC to launch earth observation constellation of 90 satellites

UK Space Agency COMPASS project aims to to improve crop yields for Mexican farmers

Satellite images reveal global poverty

New nanosatellite system captures better imagery at lower cost

ICE WORLD
Chemical synthesis of nanotubes

Carrying and releasing nanoscale cargo with 'nanowrappers'

Illuminating nanoparticle growth with X-rays

Pitt chemical engineers develop new theory to build improved nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.