. GPS News .




.
NANO TECH
New study may lead to MRIs on a nanoscale
by Staff Writers
Santa Barbara, CA (SPX) Feb 27, 2012

The magnetic field emanating from a mechanical resonator affects the quantum state of a nitrogen vacancy center in diamond. Credit: Quirin Unterreithmeier.

Magnetic resonance imaging (MRI) on the nanoscale and the ever-elusive quantum computer are among the advancements edging closer toward the realm of possibility, and a new study co-authored by a UC Santa Barbara researcher may give both an extra nudge. The findings appear in Science Express, an online version of the journal Science.

Ania Bleszynski Jayich, an assistant professor of physics who joined the UCSB faculty in 2010, spent a year at Harvard working on an experiment that coupled nitrogen-vacancy centers in diamond to nanomechanical resonators. That project is the basis for the new paper, "Coherent sensing of a mechanical resonator with a single spin qubit."

A nitrogen-vacancy (NV) center is a specific defect in diamond that exhibits a quantum magnetic behavior known as spin. When a single spin in diamond is coupled with a magnetic mechanical resonator - a device used to generate or select specific frequencies - it points toward the potential for a new nanoscale sensing technique with implications for biology and technology, Jayich explained.

Among those possible future applications of such a technique is magnetic resonance imaging on a scale small enough to image the structure of proteins - an as-yet unaccomplished feat that Jayich called "one of the holy grails of structural biology."

"The same physics that will allow the NV center to detect the magnetic field of the resonator, hopefully, will allow MRI on the nanoscale," Jayich said. "It could make MRI more accurate, and able to see more. It's like having a camera with eight megapixels versus one with two megapixels and taking a picture of someone's face. You can't see features that are smaller than the size of a pixel. So do they have three freckles, or do they all look like one big freckle?

"That's the idea," Jayich continued. "To resolve individual freckles, so to speak, to see what a protein is made up of. What we found in this paper suggests that it is possible, although a significant amount of work still needs to be done."

Though further into the future based on the approach used for this paper, Jayich said, there is also the potential for such a coupling to be advanced and exploited as a possible route toward the development of a hybrid quantum system, or quantum computer.

Jayich collaborated on the project with researchers Shimon Kolkowitz, Quirin Unterreithmeier, Steven Bennett, and Mikhail Lukin, all from Harvard; Peter Rabl, from the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Science; and J.G.E. Harris, from Yale. The work was supported in part by the National Science Foundation, the Center for Ultracold Atoms, and the Packard Foundation.

Related Links
University of California - Santa Barbara
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Light-emitting nanocrystal diodes go ultraviolet
Los Alamos, NM (SPX) Feb 27, 2012
A multinational team of scientists has developed a process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range. The work, reported this week in the online Nature Communications, is a step toward biomedical devices with active components made from nanostructured systems. LEDs based on solution-processed inorganic nanocrystals have pro ... read more


NANO TECH
Climate change threatens S.Africa's rooibos tea

Early ripening of grapes pinned to warming, soil moisture

Policies implementing GMOs need to take biodiversity complexities into account

Hermetic bags save African crop

NANO TECH
Penn Researchers Build First Physical "Metatronic" Circuit

Single-atom transistor is end of Moore's Law; may be beginning of quantum computing

A step toward better electronics

Single-atom transistor is 'perfect'

NANO TECH
Aircraft of the future could capture and re-use some of their own

Solar Impulse completes 72 hour simulated flight

Future aircraft may taxi without engines

Peru tests Green Skies fuel-saving project

NANO TECH
Daimler, Mercedes seal Aussie G-Wagen deal

Japanese carmakers boost production in January

China says Porsche to recall nearly 21,000 cars

China's Geely to assemble cars in Egypt

NANO TECH
Brazil to slap quality control on China goods

Shanghai hikes minimum pay to combat labour shortage

Iraq seeks investment to upgrade transport network

Canada hails no change in New York shipping rules

NANO TECH
Penn researcher helps discover and characterize a 300-million-year-old forest

UN recognizes US Girl Scouts for palm oil effort

WWF urges Bulgaria to drop forest law changes

NANO TECH
Google Street View to launch in Botswana

NASA Map Sees Earth's Trees In A New Light

NASA Satellite Finds Earth's Clouds are Getting Lower

Global permafrost zones in high-resolution images on Google Earth

NANO TECH
New study may lead to MRIs on a nanoscale

Metal nanoparticles shine with customizable color

Light-emitting nanocrystal diodes go ultraviolet

Coaxing gold into nanowires


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement