GPS News  
TECH SPACE
New solution for making 2-D nanomaterials
by Staff Writers
London, UK (SPX) Nov 22, 2016


A laser shines through a solution of still dissolving 2D nanomaterial showing there are particles within the liquid (left). When a drop of the solution is dried, the still dissolving nanosheets connect into different tiled shapes (right). When left to fully dissolve, only single layer sheets are found. A single layer nanosheet is blue, a two layer one is yellow, a three layer one is orange and a four layer one is red. Image courtesy Patrick Cullen, UCL.

Two-dimensional (2D) nanomaterials have been made by dissolving layered materials in liquids, according to new UCL-led research. The liquids can be used to apply the 2D nanomaterials over large areas and at low costs, enabling a variety of important future applications.

2D nanomaterials, such as graphene, have the potential to revolutionise technology through their remarkable physical properties, but their translation into real world applications has been limited due to the challenges of making and manipulating 2D nanomaterials on an industrial scale.

The new approach, published in Nature Chemistry, produced single layers of many 2D nanomaterials in a scalable way. The researchers used the method on a wide variety of materials, including those with semiconductor and thermoelectric properties, to create 2D materials that could be used in solar cells or for turning wasted heat energy into electrical energy, for example.

"2D nanomaterials have outstanding properties and a unique size, which suggests they could be used in everything from computer displays to batteries to smart textiles. Many methods for making and applying 2D nanomaterials are difficult to scale or can damage the material, but we've successfully addressed some of these issues. Hopefully our new process will help us realise the potential of 2D nanomaterials in the future," explained study director Dr Chris Howard (UCL Physics and Astronomy).

For the study, funded by the Royal Academy of Engineering and the Engineering and Physical Sciences Research Council, the scientists inserted positively charged lithium and potassium ions between the layers of different materials including bismuth telluride (Bi2Te3), molybdenum disulphide (MoS2) and titanium disulphide (TiS2), giving each layer a negative charge and creating a 'layered material salt'.

These layered material salts were then gently dissolved in selected solvents without using chemical reactions or stirring. This gave solutions of 2D nanomaterial sheets with the same shape as the starting material but with a negative charge.

The scientists analysed the contents of the solutions using atomic force microscopy and transmission electron microscopy to investigate the structure and thickness of the 2D nanomaterials. They found that the layered materials dissolved into tiny sheets of clean, undamaged, single layers, isolated in solutions.

The team from UCL, University of Bristol, Cambridge Graphene Centre and Ecole Polytechnique Federale de Lausanne, were able to demonstrate that even the 2D nanomaterial sheets, comprising millions of atoms, made stable solutions rather than suspensions.

"We didn't expect such a range of 2D nanomaterials to form a solution when we simply added the solvent to the salt - the layered material salts are large but dissolve into liquid similar to table salt in water.

"The fact that they form a liquid along with their negative charge, makes them easy to manipulate and use on a large scale, which is scientifically intriguing but also relevant to many industries," said first author Dr Patrick Cullen (UCL Chemical Engineering).

"We've shown they can be painted onto surfaces and, when left to dry, can arrange themselves into different tiled shapes, which hasn't been seen before. They can also be electroplated onto surfaces in much the same way gold is used to plate metals. We're looking forward to making different 2D nanomaterials using our process and trying them out in different applications as the possibilities are near endless," he concluded.

UCL Business PLC (UCLB), the technology commercialisation company of UCL has patented this research and will be supporting the commercialisation process.

Research Report


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University College London
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Calculations predict unexpected disorder in the surface of polar materials
Tarragona, Spain (SPX) Nov 22, 2016
The small units that constitute materials are ordered in their surfaces. The knowledge of the surface structure allows scientists to predict their properties so they can be tuned to our needs. Nevertheless, reality is more complex. The group of Professor Nuria Lopez at ICIQ in Catalonia has found, through massive simulations, that in certain surfaces disorder is intrinsic and therefore the ... read more


TECH SPACE
Watching how plants make oxygen

Rice farming used as 'summer crop' by early Indus civilization

Riders on the waves: China's jellyfish-hauling mules a dying breed

Soybean plants with fewer leaves yield more

TECH SPACE
Making spintronic neurons sing in unison

World's fastest quantum simulator operating at the atomic level

Tracking the flow of quantum information

Breakthrough in the quantum transfer of information between matter and light

TECH SPACE
Chinese travel site Ctrip buys Skyscanner for $1.7 bn

Elbit delivers military aircraft for Affinity Flying Training Services

Britain builds maintenance hangar for A400M transports

Canada to order 18 Boeing Super Hornet fighter jets

TECH SPACE
Could moving walkways be the key to car-free cities of the future?

Five things to know about VW's 'dieselgate' scandal

How much attention do drivers need to pay

A novel catalyst design opens possibility to hydrogen vehicle

TECH SPACE
Flesh-and-blood Ken exposes Chinese labour conditions

New Christie's sale taps Asian quest for Western art

Ex-Ericsson executives tell of massive bribery: report

China watching Trump policies, will defend trade rights

TECH SPACE
Tribal protesters with arrows try to enter Brazil's Congress

Remote Amazon tribe kills illegal gold miners: officials

Large forest die-offs can have effects that ricochet to distant ecosystems

Global boreal forests differ but not immune to climate change

TECH SPACE
NASA launches Advanced Geostationary Weather Satellite for NOAA

Researchers targeting mysteries of deep Earth

Who knew? Ammonia-rich bird poop cools the atmosphere

How lightning strikes can improve storm forecasts

TECH SPACE
Researchers use acoustic waves to move fluids at the nanoscale

Researchers use graphene templates to make new metal-oxide nanostructures

Nano-scale electronics score laboratory victory

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.