GPS News  
CARBON WORLDS
New soil models may ease atmospheric CO2, climate change
by Staff Writers
Ithaca NY (SPX) Aug 03, 2020

.

To remove carbon dioxide from the Earth's atmosphere in an effort to slow climate change, scientists must get their hands dirty and peek underground.

In an article published July 27 in Nature Geoscience, Cornell University's Johannes Lehmann and others wrote that scientists should develop new models that more accurately reflect the carbon-storage processes beneath our feet, in order to effectively draw down atmospheric carbon dioxide.

Carbon's journey into the soil is akin to a busy New York City rush hour. "Everything in the soil is bustling and changing all the time on a daily or hourly basis," said Lehmann, professor of soil biogeochemistry and the lead author on the piece.

"Microorganisms are on the street, but carbon quickly disappears around the corner or hides in nooks and crannies," he said. "Microorganisms in the soils that consume carbon can never be sure what tomorrow looks like."

Think of it this way: Sometimes soil microorganisms see a lot of carbon but still cannot devour it.

Lehmann and an international, interdisciplinary group of scientists propose the creation of new soil carbon-persistence models through the lens of "functional complexity" - the interplay between time and space in soil carbon's changing molecular structure.

Functional complexity drives carbon sequestration, and scientists must know specifically how carbon stays in the ground, according to Lehmann.

"Even if soil microorganisms have a full smorgasbord in front of them, they don't know what to eat if there is very little of each kind of carbon," said Lehmann, a fellow at Cornell Atkinson Center for Sustainability. "Although there is plenty of carbon, microorganisms starve, especially if they have to adjust to ever-changing conditions in a crazy maze."

With new models, scientists believe they can find out exactly how sequestration works. It could then be properly reflected in the next assessment of the United Nations Intergovernmental Panel on Climate Change (IPCC) - which likely will address drawing down atmospheric carbon.

Lehmann said that with modeling techniques gleaned from the field of engineering, for example, soil scientists can find better management methods to reduce atmospheric carbon.

"Collaboration in a stellar group of thinkers from diverse disciplines was key for us to come up with a new view on this old conundrum," he said. "We seem to be building climate models based on an erroneous understanding of why organic carbon stays in soil and how microbes are eating it. We need a new thinking to incorporate the best models for IPCC and other climate prediction efforts."

Research paper


Related Links
Cornell University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
White dwarfs reveal new insights into the origin of carbon in the universe
Santa Cruz CA (SPX) Jul 07, 2020
A new analysis of white dwarf stars supports their role as a key source of carbon, an element crucial to all life, in the Milky Way and other galaxies. Approximately 90 percent of all stars end their lives as white dwarfs, very dense stellar remnants that gradually cool and dim over billions of years. With their final few breaths before they collapse, however, these stars leave an important legacy, spreading their ashes into the surrounding space through stellar winds enriched with chemical elemen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Wild bee decline threatens major US crops: study

Clear strategies needed to reduce bushmeat hunting

Revealing Brazil's rotten agribusinesses

Vertical farms ready for take-off

CARBON WORLDS
Share surge propels Taiwan chip giant TSMC into top ten

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

A new path for electron optics in solid-state systems

Dutch chip tech maker ASML resists virus to post growth

CARBON WORLDS
Chinese airlines offer unlimited flights to revive industry

First French fighter jets head to India after purchase

DARPA awards contracts for new X-Plane program based on active flow control

NASA Mission Will Study the Cosmos With a Stratospheric Balloon

CARBON WORLDS
Uber keeps Asia HQ in Singapore, ditching Hong Kong move

Volkswagen has paid $9.5 bn to US drivers over 'dieselgate'

BMW vows to tie executive pay to climate goals

Raids in Fiat Chrysler, Iveco 'dieselgate' probe: German prosecutors

CARBON WORLDS
China's factory activity noses up in July as demand grows

Panasonic warns of annual profit dive over virus woes

China slams EU export curbs on Hong Kong over security law

Hong Kong economy reels as tough virus restrictions implemented

CARBON WORLDS
Tree planting does not always boost ecosystem carbon stocks, study finds

Investment fund drops Brazil's JBS over environment

Brazil's Bolsonaro under pressure to protect Amazon

Amazon deforestation increases 25 percent in Brazil

CARBON WORLDS
Reduction in commercial flights due to COVID-19 leading to less accurate weather forecasts

Decadal predictability of North Atlantic blocking and the NAO

Earth's vibrations quieted during COVID-19 lockdowns

A Walk Through the Rainbow with PACE

CARBON WORLDS
The smallest motor in the world

Crystalline 'nanobrush' clears way to advanced energy and information tech

Transporting energy through a single molecular nanowire

To make an atom-sized machine, you need a quantum mechanic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.