GPS News  
CHIP TECH
New oxide and semiconductor combination builds new device potential
by Staff Writers
Washington DC (SPX) Jan 11, 2018


file illustration only

Insulating oxides are oxygen containing compounds that do not conduct electricity, but can sometimes form conductive interfaces when they're layered together precisely. The conducting electrons at the interface form a two-dimensional electron gas (2DEG) which boasts exotic quantum properties that make the system potentially useful in electronics and photonics applications.

Researchers at Yale University have now grown a 2DEG system on gallium arsenide, a semiconductor that's efficient in absorbing and emitting light. This development is promising for new electronic devices that interact with light, such as new kinds of transistors, superconducting switches and gas sensors.

"I see this as a building block for oxide electronics," said Lior Kornblum, now of the Technion - Israel Institute of Technology, who describes the new research appearing this week in the Journal of Applied Physics, from AIP publishing.

Oxide 2DEGs were discovered in 2004. Researchers were surprised to find that sandwiching together two layers of some insulating oxides can generate conducting electrons that behave like a gas or liquid near the interface between the oxides and can transport information.

Researchers have previously observed 2DEGs with semiconductors, but oxide 2DEGs have much higher electron densities, making them promising candidates for some electronic applications. Oxide 2DEGs have interesting quantum properties, drawing interest in their fundamental properties as well. For example, the systems seem to exhibit a combination of magnetic behaviors and superconductivity.

Generally, it's difficult to mass-produce oxide 2DEGs because only small pieces of the necessary oxide crystals are obtainable, Kornblum said. If, however, researchers can grow the oxides on large, commercially available semiconductor wafers, they can then scale up oxide 2DEGs for real-world applications.

Growing oxide 2DEGs on semiconductors also allows researchers to better integrate the structures with conventional electronics. According to Kornblum, enabling the oxide electrons to interact with the electrons in the semiconductor could lead to new functionality and more types of devices.

The Yale team previously grew oxide 2DEGs on silicon wafers. In the new work, they successfully grew oxide 2DEGs on another important semiconductor, gallium arsenide, which proved to be more challenging.

Most semiconductors react with oxygen in the air and form a disordered surface layer, which must be removed before growing these oxides on the semiconductor. For silicon, removal is relatively easy - researchers heat the semiconductor in vacuum. This approach, however, doesn't work well with gallium arsenide.

Instead, the research team coated a clean surface of a gallium arsenide wafer with a layer of arsenic. The arsenic protected the semiconductor's surface from the air while they transferred the wafer into an instrument that grows oxides using a method called molecular beam epitaxy. This allows one material to grow on another while maintaining an ordered crystal structure across the interface.

Next, the researchers gently heated the wafer to evaporate the thin arsenic layer, exposing the pristine semiconductor surface beneath. They then grew an oxide called SrTiO3 on the gallium arsenide and, immediately after, another oxide layer of GdTiO3. This process formed a 2DEG between the oxides.

Gallium arsenide is but one of a whole class of materials called III-V semiconductors, and this work opens a path to integrate oxide 2DEGs with others.

"The ability to couple or to integrate these interesting oxide two-dimensional electron gases with gallium arsenide opens the way to devices that could benefit from the electrical and optical properties of the semiconductor," Kornblum said.

"This is a gateway material for other members of this family of semiconductors."

Research Report: "Oxide Heterostrutures for High Density 2D Electron Gases on GaAs"

CHIP TECH
Tech firms battle to resolve major security flaw
Paris (AFP) Jan 6, 2018
Amazon, Google and now Apple - as the list of digital giants hit by the "Spectre" and "Meltdown" computer security flaws grows longer, the race is on to limit the damage. "All Mac systems and iOS devices are affected, but there are no known exploits impacting customers at this time," Apple - whose devices are usually regarded as secure - said in a post on an online support page on Thursd ... read more

Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Warming to force winemakers, growers to plant different varieties

Speed breeding technique sows seeds of new green revolution

Speed breeding breakthrough to boost crop research

Sao Tome: Rainforests, chocolate and millionaires

CHIP TECH
Intel chief says chip flaw damage contained by industry

Tech firms battle to resolve major security flaw

New study visualizes motion of water molecules, promises new wave of electronic devices

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor

CHIP TECH
US firm seals deal to resume MH370 hunt: Malaysia

High-tech ship en route to resume hunt for MH370

JPATS Logistics Services to support T-6 aircraft in new contract

Bell announces first flight for V-280 tiltrotor aircraft

CHIP TECH
With pricey electric car, Fisker eyes comeback

U.S. vehicle sales skew gas mileage average lower

Startup unveils 'car of future' for $45,000

Toyota brings the store to you with self-driving concept vehicle

CHIP TECH
France signs deals with China but warns against 'pillaging'

Macron begins China state visit at Silk Road gateway

Macron bets on horse diplomacy in China

Europe casts a wary eye on China's Silk Road plans

CHIP TECH
North Atlantic Oscillation dictates timing of tree reproduction in Europe

African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril

CHIP TECH
Resourcesat-2A Completes One Year in Space

Scientists discover unexpected side effect to cleaning up urban air

NASA's Magnetospheric Multiscale Mission locates elusive electron act

NASA-led Study Solves a Methane Puzzle

CHIP TECH
Silver nanoparticles take spectroscopy to new dimension

Researchers find simpler way to deposit magnetic iron oxide onto gold nanorods

Discovery sets new world standard in nano generators

A 100-fold leap to GigaDalton DNA nanotech









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.