. GPS News .




.
CHIP TECH
New microtweezers may build tiny 'MEMS' structures
by Emil Venere for Purdue News
West Lafayette, IN (SPX) Jan 18, 2012

Purdue researchers have created a new type of microtweezers capable of manipulating objects to build tiny structures, print coatings to make advanced sensors, and grab and position live stem cell spheres for research. (Birck Nanotechnology Center photo).

Researchers have created new "microtweezers" capable of manipulating objects to build tiny structures, print coatings to make advanced sensors, and grab and position live stem cell spheres for research.

The microtweezers might be used to assemble structures in microelectromechanical systems, or MEMS, which contain tiny moving parts. MEMS accelerometers and gyroscopes currently are being used in commercial products.

A wider variety of MEMS devices, however, could be produced through a manufacturing technology that assembles components like microscopic Lego pieces moved individually into place with microtweezers, said Cagri Savran (pronounced Chary Savran), an associate professor of mechanical engineering at Purdue University.

"We've shown how this might be accomplished easily, using new compact and user-friendly microtweezers to assemble polystyrene spheres into three-dimensional shapes," he said.

Research findings were detailed in a paper that appeared online in December in the Journal of Microelectromechanical Systems, or JMEMS. The paper was written by Savran, mechanical engineering graduate students Bin-Da Chan and Farrukh Mateen, electrical and computer engineering graduate student Chun-Li Chang, and biomedical engineering doctoral student Kutay Icoz.

The new tool contains three main parts: a thimble knob from a standard micrometer, a two-pronged tweezer made from silicon, and a "graphite interface," which converts the turning motion of the thimble knob into a pulling-and-pushing action to open and close the tweezer prongs.

No electrical power sources are needed, increasing the potential for practical applications. Other types of microtweezers have been developed and are being used in research. However, the new design is simpler both to manufacture and operate, Savran said.

The design contains a one-piece "compliant structure," which is springy like a bobby pin or a paperclip. Most other microtweezers require features such as hinges or components that move through heat, magnetism or electricity, complex designs that are expensive to manufacture and relatively difficult to operate in various media, he said.

The tweezers make it feasible to precisely isolate individual stem cell spheres from culture media and to position them elsewhere. Currently, these spheres are analyzed in large groups, but microtweezers could provide an easy way to study them by individually selecting and placing them onto analytical devices and sensors.

"We currently are working to weigh single micro particles, individually selected among many others, which is important because precise measurements of an object's mass reveal key traits, making it possible to identify composition and other characteristics," Savran said. "This will now be as easy as selecting and weighing a single melon out of many melons in a supermarket."

That work is a collaboration with the research group of Timothy Ratliff, the Robert Wallace Miller Director of Purdue's Center for Cancer Research.

The microtweezers also could facilitate the precision printing of chemical or protein dots onto "microcantilevers," strips of silicon that resemble tiny diving boards. The microcantilevers can be "functionalized," or coated with certain chemicals or proteins that attract specific molecules and materials. Because they vibrate at different frequencies depending on what sticks to the surface, they are used to detect chemicals in the air and water.

Generally, microcantilevers are functionalized to detect one type of substance by exposing them to fluids, Savran said.

However, being able to microprint a sequence of precisely placed dots of different chemicals on each cantilever could make it possible to functionalize a device to detect several substances at once. Such a sensing technology also would require a smaller sample size than conventional diagnostic technologies, making it especially practical.

The new microtweezers are designed to be attached easily to "translation stages" currently used in research.

These stages are essentially platforms on which to mount specimens for viewing and manipulating. Unlike most other microtweezers, the new device is highly compact and portable and can be easily detached from a platform and brought to another lab while still holding a micro-size object for study, Savran said.

The two-pronged tweezer is micromachined in a laboratory called a "clean room" with the same techniques used to create microcircuits and computer chips. The research was based at the Birck Nanotechnology Center in Purdue's Discovery Park.

Purdue has filed for a provisional patent on the design.

Related Links
Purdue
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Particle-free silver ink prints small, high-performance electronics
Champaign, IL (SPX) Jan 17, 2012
University of Illinois materials scientists have developed a new reactive silver ink for printing high-performance electronics on ubiquitous, low-cost materials such as flexible plastic, paper or fabric substrates. Jennifer Lewis, the Hans Thurnauer Professor of Materials Science and Engineering, and graduate student S. Brett Walker described the new ink in the Journal of the American Chem ... read more


CHIP TECH
Prices plunge as China turns sour on top Bordeaux

China struggles to meet surging demand for dairy

Short, sharp shock treatment for E. coli

Diverse ecosystems are crucial climate change buffer

CHIP TECH
New microtweezers may build tiny 'MEMS' structures

High-speed CMOS sensors provide better images

Particle-free silver ink prints small, high-performance electronics

10-second dance of electrons is step toward exotic new computers

CHIP TECH
JAL names ex-pilot as new president

India protests EU airline emissions tax

Airbus agrees A380 deal with Hong Kong Airlines: reports

Slovenian adventurer embarks on eco-friendly world trip

CHIP TECH
One-third of car fuel consumption is due to friction loss

China auto sales growth hits the brakes in 2011

Karma hybrid car offers earth-friendly luxury

Research is driving solutions to improve unpaved roads

CHIP TECH
Newspapers in Japan defy West's media malaise

Deal on Europe-wide patent 'in days': Barnier

China's Wen calls for Gulf free trade pact

EU urges China to join WTO procurement deal

CHIP TECH
Brazil says no evidence loggers burned indigenous girl

African rainforests said to be resilient

Guyana, Germany ink deal to protect Amazon

In Romania, a pledge to shield bastion of Europe's forests

CHIP TECH
A step closer to mapping the Earth in 3D

Ziyuan III satellite sends back hi-res images

NASA Radar to Study Most Active Volcano On Hawaii

Astro Aerospace Completes CDA of Reflector Boom Assembly for SMAP Mission

CHIP TECH
New form of graphene could prevent electronics from overheating and revolutionize thermal management

VW nears number one ranking with 8 mn sales

Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement