GPS News  
TECH SPACE
New method helps stabilize materials with elusive magnetism
by Staff Writers
New York NY (SPX) Aug 12, 2016


File image.

Magnetic materials displaying what is referred to as itinerant ferromagnetism are in an elusive physical state that is not yet fully understood. They behave like a magnets under very specific conditions, such as at ultracold temperatures near absolute zero. Physicists normally have no other choice than to study this very unique state of matter in a controlled fashion, using ultracold atomic gases.

Now, a team based at ETH Zurich, Switzerland has introduced two new theoretical approaches to stabilise the ferromagnetic state in quantum gases to help study the characteristics of itinerant ferromagnetic materials. These results were recently published in EPJ B by Ilia Zintchenko and colleagues.

Physicists already know that magnetic order can arise in materials when the temperature drops below their material-specific critical temperature.

Then the state of electrons' inner characteristics, called spin, can either be split between spin up and spin down, while the electrons can still move in space.

Realising the itinerant ferromagnetic state experimentally using ultracold gas is a challenging undertaking.

This is because when three atoms - one with the opposite spin of the other two - come close to each other two atoms with opposite spin will form molecules and the other one carries the binding energy away; a phenomenon called rapid three-body recombination. The rate of such recombination process increases rapidly with the scattering length.

In this study, the authors discussed two new improved stability conditions for ferromagnetic state in quantum gasses. The first approach involves imposing a moderate optical lattice, which extends the ferromagnetic phase to smaller scattering lengths.

There, the three-body recombination is small enough to permit experimental detection of the phase. In a second approach, they suggest to prepare two initially separated clouds and study their time evolution. The ferromagnetic domains has longer life time because of the reduced overlap region between the two spins.

I. Zintchenko, L. Wang and M. Troyer (2016), Ferromagnetism of the Repulsive Atomic Fermi Gas: three-body recombination and domain formation, Eur. Phys. J. B 89: 180, DOI 10.1140/epjb/e2016-70302-5


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Springer
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Self-cleaning, anti-reflective, microorganism-resistant coatings
Leioa, Spain (SPX) Aug 10, 2016
Coatings or paints are materials applied to different surfaces basically for decorative and protective purposes. Yet today the market for these materials is being subjected to increasingly tougher specifications. In addition to being decorative and protective, today's coatings must have additional properties such as, for example, low microorganism-adherence, ease of cleaning or self-repair ... read more


TECH SPACE
Sequencing of fungal disease genomes may help prevent banana arma

Not all is green in Mexico City's Aztec garden district

Saving bees: France's thriving city hives offer token help

California grapes threatened by giant fire

TECH SPACE
See-through circuitry

USC quantum computing researchers reduce quantum information processing errors

Prototype chip could help make quantum computing practical

Liquid light switch could enable more powerful electronics

TECH SPACE
NASA Charges Toward Greener Aviation With Novel Concepts

Sidewinder three for three in F-35 test firings

Boeing contracted for work on U.S. Navy F/A-18 E/F and EA-18G aircraft

Leonardo-Finmeccanica resumes AW609 flight tests

TECH SPACE
New Zealand offers electric vehicle stimulus

US finds evidence of criminality in VW probe: report

China auto sales surge 23% in July: industry group

NREL assesses strategies needed for light-duty vehicle greenhouse gas reduction

TECH SPACE
Samsung buys US luxury home appliance maker Dacor

Taiwan's Hon Hai gets Chinese green light for Sharp deal

Montreal march kicks off World Social Forum

Down but not out: fears ease over China's weaker yuan

TECH SPACE
A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

Early snowmelt reduces forests' atmospheric CO2 uptake

TECH SPACE
CYGNSS Undergoes Vibration Testing

Map shows how Earth's vegetation has changed since 1980s

Iran, Roscosmos Discuss Price of Remote-Sensing Satellite Construction, Launch

Study Maps Hidden Water Pollution in U.S. Coastal Areas

TECH SPACE
Quantum dots with impermeable shell: A powerful tool for nanoengineering

Tailored probes for atomic force microscopes

Smarter self-assembly opens new pathways for nanotechnology

New silicon structures could make better biointerfaces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.