GPS News  
CARBON WORLDS
New imaging method views soil carbon at near-atomic scales
by Staff Writers
Ithica NY (SPX) Dec 30, 2020

illustration only

The Earth's soils contain more than three times the amount of carbon than is found in the atmosphere, but the processes that bind carbon in the soil are still not well understood.

Improving such understanding may help researchers develop strategies for sequestering more carbon in soil, thereby keeping it out of the atmosphere where it combines with oxygen and acts as a greenhouse gas.

A new study describes a breakthrough method for imaging the physical and chemical interactions that sequester carbon in soil at near atomic scales, with some surprising results.

The study, "Organo-organic and Organo-mineral Interfaces in Soil at the Nanometer Scale," was published Nov. 30 in Nature Communications.

At that resolution, the researchers showed - for the first time - that soil carbon interacts with both minerals and other forms of carbon from organic materials, such as bacterial cell walls and microbial byproducts. Previous imaging research had only pointed to layered interactions between carbon and minerals in soils.

"If there is an overlooked mechanism that can help us retain more carbon in soils, then that will help our climate," said senior author Johannes Lehmann, the Liberty Hyde Bailey Professor in the School of Integrative Plant Science, Soil and Crop Sciences Section, in the College of Agriculture and Life Sciences. Angela Possinger Ph.D. '19, who was a graduate student in Lehmann's lab and is currently a postdoctoral researcher at Virginia Tech University, is the paper's first author.

Since the resolution of the new technique is near atomic scale, the researchers are not certain what compounds they are looking at, but they suspect the carbon found in soils is likely from metabolites produced by soil microbes and from microbial cell walls. "In all likelihood, this is a microbial graveyard," Lehmann said.

"We had an unexpected finding where we could see interfaces between different forms of carbon and not just between carbon and minerals," Possinger said. "We could start to look at those interfaces and try to understand something about those interactions."

The technique revealed layers of carbon around those organic interfaces. It also showed that nitrogen was an important player for facilitating the chemical interactions between both organic and mineral interfaces, Possinger said.

As a result, farmers may improve soil health and mitigate climate change through carbon sequestration by considering the form of nitrogen in soil amendments, she said.

While pursuing her doctorate, Possinger worked for years with Cornell physicists - including co-authors Lena Kourkoutis, associate professor of applied and engineering physics, and David Muller, the Samuel B. Eckert Professor of Engineering in Applied and Engineering Physics, and the co-director of the Kavli Institute at Cornell for Nanoscale Science - to help develop the multi-step method.

The researchers planned to use powerful electron microscopes to focus electron beams down to sub-atomic scales, but they found the electrons modify and damage loose and complex soil samples. As a result, they had to freeze the samples to around minus 180 degrees Celsius, which reduced the harmful effects from the beams.

"We had to develop a technique that essentially keeps the soil particles frozen throughout the process of making very thin slices to look at these tiny interfaces," Possinger said.

The beams could then be scanned across the sample to produce images of the structure and chemistry of a soil sample and its complex interfaces, Kourkoutis said.

"Our physics colleagues are leading the way globally to improve our ability to look very closely into material properties," Lehmann said. "Without such interdisciplinary collaboration, these breakthroughs are not possible.".

The new cryogenic electron microscopy and spectroscopy technique will allow researchers to probe a whole range of interfaces between soft and hard materials, including those that play roles in the function of batteries, fuel cells and electrolyzers, Kourkoutis said.

Research Report: "Organo-organic and organo-mineral interfaces in soil at the nanometer scale"


Related Links
Cornell University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
A new method for the functionalization of graphene
Quebec City, Canada (SPX) Dec 17, 2020
An international research team involving Professor Federico Rosei of the Institut national de la recherche scientifique (INRS) has demonstrated a novel process to modify the structure and properties of graphene, a one atom thick carbon. This chemical reaction, known as photocycloaddition, modifies the bonds between atoms using ultraviolet (UV) light. The results of the study were recently published in the prestigious journal Nature Chemistry. Graphene has outstanding physical, optical and me ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Organic, non-organic meats have similar greenhouse gas impacts

Austrians press EU to talk turkey, raise farm standards

Scientists suggested a way to measure soil properties at any depth without digging

Climate change ravages Kashmir's 'red gold' saffron crop

CARBON WORLDS
Extremely energy efficient microprocessor developed using superconductors

US blacklists Chinese companies including chip giant SMIC

US blacklists Chinese companies including chip giant SMIC

An LED that can be integrated directly into computer chips

CARBON WORLDS
State Department approves $128.1M aircraft sale to Kazakhstan

Five women among 24 graduates of USAF test pilot school

X-59 construction reaches halfway point

Northrop Grumman's BACN Gateway System surpasses 200,000 combat flight hours

CARBON WORLDS
Fiat greenlights electric car production in Poland

New engine capability accelerates advanced vehicle research

EU court finds against 'Dieselgate' car firms

Poland taps coal region for first electric car plant

CARBON WORLDS
Sterling extends gains, markets mixed as traders see out 2020

China's December factory activity slows, recovery on track

EU to get China investment deal despite rights worries

Australian lobster sector claws back trade after China ban

CARBON WORLDS
Fire-resistant tropical forest on brink of disappearance

Land ecosystems are becoming less efficient at absorbing CO2

When dinosaurs disappeared, forests thrived

Storing carbon through tree planting, preservation costs more than thought

CARBON WORLDS
2020 weather disasters boosted by climate change: report

How scientists are using declassified military photographs to analyse historical ecological change

UP42 to Offer Smart Satellite Data from Australia's LatConnect 60 on the UP42 Geospatial Marketplace

Teledyne e2v signs detector supply contract for Copernicus Sentinel MAP instrument

CARBON WORLDS
Atomic-scale nanowires can now be produced at scale

Weak force has strong impact on nanosheets

Making 3D nanosuperconductors with DNA

Researchers share design for affordable single-molecule microscope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.