GPS News  
CHIP TECH
New ergonomic photodetector for the trillion-sensor era
by Staff Writers
Incheon, South Korea (SPX) Sep 28, 2021

stock illustration only

The world is heading towards a trillion-sensor economy where billions of devices using multiple sensors will be connected under the umbrella of Internet-of-things. An important part of this economy is constituted of light/photo sensors, which are tiny semiconductor-based electronic components that detect light and convert them to electrical signals. Light sensors can be found everywhere around us, from household electronic gadgets and health-care equipment to optical communication systems and automobiles.

Over the years, there has been marked progress in research on photosensors. Scientists have endeavored to develop sensors that can detect a high dynamic range of lights and are easy to manufacture and energy efficient. Most light sensors used in cost-effective consumer products are energy efficient but are susceptible to noise-unwanted light information- in the external environment, which adversely affects their performance.

To tackle this issue, products have been designed using light-to-frequency conversion circuits (LFCs), which show better signal to noise ratio. However, most LFCs are made of silicon-based photodetectors that can limit the range of light detection. Also, use of LFCs leads to chip area wastage, which becomes a problem when designing multi-functional electronic circuits for compact devices.

Now a team of researchers from Incheon National University, South Korea, led by Prof. Sung Hun Jin, has demonstrated a highly efficient system of photodetectors that can overcome the limitations of conventional LFCs. I

n their study, which was made available online on 10 June 2021 and subsequently published in volume 17, issue 26 of the journal Small, they report developing complimentary photosensitive inverters with p-type single walled carbon nanotubes (SWNT) and n-type amorphous indium-gallium-zinc-oxide (a-IGZO/SWNT) thin film transistors.

Prof Jin explains "Our photodetector applies a different approach with regard to the light-to-frequency conversion. We have used components that are light dependent and not voltage dependent, unlike conventional LFCs."

The new design architecture allowed the team to design LFC with superior chip area efficiency and compact form factor, making it suitable for use in flexible electronic devices. Experiments conducted using the photosensor system indicated excellent optical properties, including high tunability and responsiveness over a broad range of light. The LFC also showed possibility of large area scalability and easy integration into state-of-the-art silicon wafer-based chips.

The LFC system developed in this study can be used to build optical sensor systems that have high-level signal integrity, as well as excellent signal processing and transmitting abilities. These promising properties make it a strong contender for application in future Internet-of-Things sensor scenarios.

"LFCs based on low dimensional semiconductors will become one of the core components in the trillion sensors area. Our LFC scheme will find application in medical SpO2 detection, auto-lighting in agriculture, or in advanced displays for virtual and augmented reality" concludes Prof Jin.

"Flexible Light-to-Frequency Conversion Circuits Built with Si-Based Frequency to-Digital Converters via Complementary Photosensitive Ring Oscillators with p-Type SWNT and n Type a-IGZO Thin Film Transistors"


Related Links
Incheon National University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
First observation of energy-difference conservation in optical domain
Pohang, South Korea (SPX) Sep 24, 2021
When optical gain or loss are precisely controlled using nanophotonics, a new physical event called the non-Hermitian phenomenon can be observed, potentially the next-generation technology of optical signal control and sensing. However, it is difficult to control the optical gain and loss in optical experiments precisely. Recently, a research team led by Professor Heedeuk Shin of the Department of Physics at POSTECH, in collaboration with a research team led by Professor Jae Woong Yoon of the Depa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Australia asks WTO to rule against Chinese wine tariffs

UN calls for 'repurposing' farm subsidies harming environment

Animal-based food generates nearly twice the emissions as plant

Researchers potty-train cows to reduce ammonia emissions

CHIP TECH
First observation of energy-difference conservation in optical domain

Spintronics: Physicists develop miniature terahertz sources

Ultra-efficient tech to power devices of tomorrow and forge sustainable energy future

Researchers use gold film to enhance quantum sensing with qubits in a 2D material

CHIP TECH
Airbus launches extra high performance wing demonstrator to fortify decarbonisation ambition

KLM Flight Academy signs up for 14 Bye Aerospace All-electric eFlyers

Air Force secretary: Branch focused on confronting China, must retire old platforms

US Navy jet crashes in Texas neighborhood, pilots hospitalized

CHIP TECH
Swedish electric car maker Polestar plans $20-bn IPO

Shares in Evergrande EV unit plunge as cash dries up

UK climate motorway protesters risk jail under new injunction

Making self-driving cars safer through keener robot perception

CHIP TECH
China's central bank rules all crypto transactions are illegal

Australia sets conditions for China joining Pacific pact

EU says US tech talks going ahead despite French anger

Evergrande agrees deal to avoid default on key bond: company

CHIP TECH
US firefighters optimistic over world's biggest tree

Romania probes logger assault claim by filmmakers

Death stalks Colombian defenders of nature

Death stalks Colombian defenders of nature

CHIP TECH
Exolaunch to facilitate launch of Lunasonde's Gossamer Satellite Constellation

Earth from Space: Maharloo Lake

What's going on with the ozone?

Jet stream changes could amplify weather extremes by 2060s

CHIP TECH
Striking Gold: A Pathway to Stable, High-Activity Catalysts from Gold Nanoclusters

Tracking the movement of a single nanoparticle

Researchers demonstrate technique for recycling nanowires in electronics

Custom-made MIT tool probes materials at the nanoscale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.