Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
New electron spin secrets revealed
by Staff Writers
Trondheim, Norway (SPX) Nov 11, 2014


File image.

Researchers from the Norwegian University of Science and Technology (NTNU) and the University of Cambridge in the UK have demonstrated that it is possible to directly generate an electric current in a magnetic material by rotating its magnetization.

The findings reveal a novel link between magnetism and electricity, and may have applications in electronics.

The electric current generation demonstrated by the researchers is called charge pumping. Charge pumping provides a source of very high frequency alternating electric currents, and its magnitude and external magnetic field dependency can be used to detect magnetic information.

The findings may, therefore, offer new and exciting ways of transferring and manipulating data in electronic devices based on spintronics, a technology that uses electron spin as the foundation for information storage and manipulation.

The research findings are published as an Advance Online Publication (AOP) on Nature Nanotechnology's website on 10 November 2014.

Spintronics has already been exploited in magnetic mass data storage since the discovery of the giant magnetoresistance (GMR) effect in 1988. For their contribution to physics, the discoverers of GMR were awarded the Nobel Prize in 2007.

The basis of spintronics is the storage of information in the magnetic configuration of ferromagnets and the read-out via spin-dependent transport mechanisms.

"Much of the progress in spintronics has resulted from exploiting the coupling between the electron spin and its orbital motion, but our understanding of these interactions is still immature. We need to know more so that we can fully explore and exploit these forces," says Arne Brataas, professor at NTNU and the corresponding author for the paper.

An electron has a spin, a seemingly internal rotation, in addition to an electric charge. The spin can be up or down, representing clockwise and counterclockwise rotations.

Pure spin currents are charge currents in opposite directions for the two spin components in the material.

It has been known for some time that rotating the magnetization in a magnetic material can generate pure spin currents in adjacent conductors.

However, pure spin currents cannot be conventionally detected by a voltmeter because of the cancellation of the associated charge flow in the same direction.

A secondary spin-charge conversion element is then necessary, such as another ferromagnet or a strong spin-orbit interaction, which causes a spin Hall effect.

Brataas and his collaborators have demonstrated that in a small class of ferromagnetic materials, the spin-charge conversion occurs in the materials themselves.

The spin currents created in the materials are thus directly converted to charge currents via the spin-orbit interaction.

In other words, the ferromagnets function intrinsically as generators of alternating currents driven by the rotating magnetization.

"The phenomenon is a result of a direct link between electricity and magnetism. It allows for the possibility of new nano-scale detection techniques of magnetic information and for the generation of very high-frequency alternating currents," Brataas says.

The generation and modulation of high-frequency currents are central wireless communication devices such as mobile phones, WLAN modules for personal computers, Bluetooth devices and future vehicle radars.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Norwegian University of Science and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Noise in a microwave amplifier is limited by quantum particles of heat
Gothenburg, Sweden (SPX) Nov 11, 2014
As part of an international collaboration, scientists at Chalmers University of Technology have demonstrated how noise in a microwave amplifier is limited by self-heating at very low temperatures. The results will be published in the prestigious journal Nature Materials. The findings can be of importance for future discoveries in many areas of science such as quantum computers and radio as ... read more


TIME AND SPACE
BAM-FX offers agricultural solutions across seven states

Insights into plant growth could curb need for fertilizers

Stolen or farmed, Greek mountain herbs take off

Anti-organic: Why do some farmers resist profitable change?

TIME AND SPACE
Heat transfer sets the noise floor for ultrasensitive electronics

SLAC Study explains atomic action in high-temp superconductors

'Direct writing' of diamond patterns from graphite a potential technological leap

Clearing a path for electrons in polymers: Closing in on the speed limits

TIME AND SPACE
NASA tests new shape changing aircraft flap for the first time

Wanted: Ideas for Transform Planes into "Aircraft Carriers in the Sky"

China shows off new stealth fighter

U.S. Air Force orders spare engines from Rolls-Royce

TIME AND SPACE
Funding for Uber could push value past $30 bn: report

QUT leading the charge for panel-powered car

Dongfeng, Huawei partner for Internet-enabled cars

Electric car revs to world record in Switzerland

TIME AND SPACE
Taiwan alarmed by China-Seoul free trade pact

Xi, Abe meet as big-power rivalries take APEC stage

'Milestone' Hong Kong, Shanghai stock link to launch

China, S. Korea secure 'effective' free trade deal

TIME AND SPACE
Call for greater protection at World Parks Congress

China's old-growth forests vanishing despite government policies

Early New Zealand population initiated rapid forest transition

NEIKER fells pine trees to study their wind resistance

TIME AND SPACE
NASA Lining up ICESat-2's Laser-catching Telescope

Five years of soil moisture, ocean salinity and beyond

Goodbye to Rainy Days for US, Japan's First Rain Radar in Space

ADS boosts EO portfolio with the addition of DMC Data

TIME AND SPACE
On-demand conductivity for graphene nanoribbons

Measuring nano-vibrations

Live Images from the Nano-cosmos

Outsmarting Thermodynamics in Self-assembly of Nanostructures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.