GPS News  
ENERGY TECH
New class of fuel cells offer increased flexibility, lower cost
by Staff Writers
Los Alamos NM (SPX) Aug 26, 2016


Yu Seung Kim (left) and Kwan-Soo Lee (right). For a larger version of this image please go here.

A new class of fuel cells based on a newly discovered polymer-based material could bridge the gap between the operating temperature ranges of two existing types of polymer fuel cells, a breakthrough with the potential to accelerate the commercialization of low-cost fuel cells for automotive and stationary applications.

A Los Alamos National Laboratory team, in collaboration with Yoong-Kee Choe at the National Institute of Advanced Industrial Science and Technology in Japan and Cy Fujimoto of Sandia National Laboratories, has discovered that fuel cells made from phosphate-quaternary ammonium ion-pair can be operated between 80C and 200C with and without water, enhancing the fuel cells usability in a range of conditions. The research is published in the journal Nature Energy.

"Polymer-based fuel cells are regarded as the key technology of the future for both vehicle and stationary energy systems," said Yu Seung Kim, the project leader at Los Alamos. "There's a huge benefit to running fuel cells at the widest possible operating temperature with water tolerance.

But current fuel-cell vehicles need humidified inlet streams and large radiators to dissipate waste heat, which can increase the fuel-cell system cost substantially, so people have looked for materials that can conduct protons under flexible operating conditions. It is very exciting that we have now found such materials."

Los Alamos has been a leader in fuel-cell research since the 1970s. Fuel cell technologies can significantly benefit the nation's energy security, the environment and economy through reduced oil consumption, greenhouse gas emissions, and air pollution. The current research work supports the Laboratory's missions related to energy security and materials for the future.

Currently, two main classes of polymer-based fuel cells exist. One is the class of low-temperature fuel cells that require water for proton conduction and cannot operate above 100C. The other type is high-temperature fuel cells that can operate up to 180C without water; however, the performance degrades under water-absorbing conditions below 140C.

The research team found that a phosphate-quaternary ammonium ion-pair has much stronger interaction, which allows the transport of protons effectively even under water-condensing conditions.

"The discovery happened when we were investigating alkaline hydroxide conducting membranes, which have quaternary ammonium groups," said Kim.

"While the alkaline membranes work only under high pH conditions, the idea came across that alkaline membranes can be used under low pH conditions by combining with phosphoric acid" said Kim.

"This was a breathtaking moment, when Choe brought the calculation data that showed the interaction between quaternary ammonium and biphosphate is 8.7 times stronger than conventional acid-base interaction."

The Los Alamos team collaborated with Fujimoto at Sandia to prepare quaternary ammonium functionalized polymers. The prototype fuel cells made from the ion-pair-coordinated membrane demonstrated excellent fuel-cell performance and durability at 80-200 C, which is unattainable with existing fuel cell technology.

What's next? "The performance and durability of this new class of fuel cells could even be further improved by high-performing electrode materials," said Kim, citing an advance expected within five to ten years that is another critical step to replace current low-temperature fuel cells used in vehicle and stationary applications.

"An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Los Alamos National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Fungi recycle rechargeable lithium-ion batteries
Philadelphia PA (SPX) Aug 23, 2016
Although rechargeable batteries in smartphones, cars and tablets can be charged again and again, they don't last forever. Old batteries often wind up in landfills or incinerators, potentially harming the environment. And valuable materials remain locked inside. Now, a team of researchers is turning to naturally occurring fungi to drive an environmentally friendly recycling process to extract cob ... read more


ENERGY TECH
Cameroon must halt rubber plantation project: Greenpeace

Stormy outlook hits French wine output

Bonfires light up Baltic coast, with tech-savvy twist

Molecular signature shows plants are adapting to increasing CO2

ENERGY TECH
A nanoscale wireless communication system via plasmonic antennas

New microchip demonstrates efficiency and scalable design

Electrons at the speed limit

New theory could lead to new generation of energy friendly optoelectronics

ENERGY TECH
Maiden flight for first Japanese F-35

Wheels up for China's new aero-engine group

Afghan air force gets more MD-530 helicopters

China's H-6K bomber to be showcased at first public event

ENERGY TECH
VW pressed by US judge and dealerships in "dieselgate"

Bio-inspired tire design: Where the rubber meets the road

Giving eCar drivers more miles per minute of charging

Singapore trials driverless taxis in world first

ENERGY TECH
Apple faces huge Irish tax payout in EU case

Canada PM Trudeau to mount charm offensive in China: officials

Chinese tycoon to buy US aluminium maker for $2.33 bn

Iran interested in proposed Chinese-built canal in Nicaragua

ENERGY TECH
Modelling water uptake in wood opens up new design framework

Europe's oldest known living inhabitant

Logged rainforests can be an 'ark' for mammals, extensive study shows

Logged forests are havens for endangered species in Southeast Asia

ENERGY TECH
FLEX takes on mutants

LTU uses underground radar to locate post-Katrina damage

Stanford scientists combine satellite data and machine learning to map poverty

Van Allen probes catch rare glimpse of supercharged radiation belt

ENERGY TECH
Lehigh engineer discovers a high-speed nano-avalanche

Silicon nanoparticles trained to juggle light

Quantum dots with impermeable shell: A powerful tool for nanoengineering

Researchers resolve problem that has been holding back a tech revolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.