GPS News  
New X-ray Technique Targets Terrorists And Tumors

The TEDDI method is highly applicable to biomaterials, with the possibility of specific tissue identification in humans or identifying explosives, cocaine or heroin in freight. It could also be used in aerospace engineering, to establish whether the alloys in a weld have too much strain.
by Staff Writers
Manchester UK (SPX) Dec 03, 2007
Scientists at The University of Manchester have developed a new x-ray technique that could be used to detect hidden explosives, drugs and human cancers more effectively. Professor Robert Cernik and colleagues from The School of Materials have built a prototype colour 3D X-ray system that allows material at each point of an image to be clearly identified.

The innovative work is reported in the latest issue of The Journal of the Royal Society Interface and is published online.

The technique developed by the Manchester scientists is known as tomographic energy dispersive diffraction imaging or TEDDI.

It harnesses all the wavelengths present in an x-ray beam to create probing 3D pictures.

The technique improves on existing methods by allowing detailed images to be created with one very simple scanning motion.

The method makes use of advanced detector and collimator engineering pioneered at Daresbury Laboratory, Rutherford Appleton Laboratory and The University of Cambridge.

Scientists believe this advanced engineering will reduce the time taken to create a sample scan from hours to just a few minutes.

This shorter period would eliminate the problem of radiation damage, allowing biopsy samples to be studied and normal tissue types to be distinguished from abnormal.

Professor Cernik said: "We have demonstrated a new prototype X-ray imaging system that has exciting possibilities across a wide range of disciplines including medicine, security scanning and aerospace engineering.

"Current imaging systems such as spiral CAT scanners do not use all the information contained in the X-ray beam. We use all the wavelengths present to give a colour X-ray image. This extra information can be used to fingerprint the material present at each point in a 3D image.

"The TEDDI method is highly applicable to biomaterials, with the possibility of specific tissue identification in humans or identifying explosives, cocaine or heroin in freight. It could also be used in aerospace engineering, to establish whether the alloys in a weld have too much strain."

To develop the technology Prof Cernik and his team have had to overcome two major technological challenges.

The first was to produce pixellated spectroscopy grade energy sensitive detectors. This was carried out in collaboration with Rutherford Appleton Laboratory, Oxford and Daresbury Laboratory, Cheshire.

The second challenge was to build a device known as a 2D collimator, which filters and directs streams of scattered X-rays. The collimator device needed to have a high aspect ratio of 6000:1, meaning that it its width to its length is more than that of the channel tunnel.

This device was built using a laser drilling method in collaboration with The University of Cambridge.

Professor Cernik added: "There is a great deal of interest within engineering communities in the non-destructive determination of residual stresses in manufactured components, especially in critical areas such as aircraft wings and engine casings.

"The TEDDI system can be used for strain scanning whole fabricated components in the automotive or aerospace industries, although we are currently limited to light alloys."

Using detectors made from silicon, the Manchester team has been restricted to looking at thin samples or light atom structures.

But they are developing new, high purity, high atomic weight, semiconductor detector materials that will remove this difficulty and drastically speed up scanning times.

Related Links
University of Manchester
The Long War - Doctrine and Application



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Argonne Bolsters Efforts In Security Research
Argonne IL (SPX) Nov 29, 2007
The U.S. Department of Energy's Argonne National Laboratory has expanded its capabilities to protect U.S. interests at home and abroad. The Vulnerability Assessment Team (VAT) moved to Argonne's Nuclear Engineering Division last month from Los Alamos National Laboratory (LANL). The VAT conducts multi-disciplinary research and development on physical security devices, systems and programs.







  • Announcement Of Opportunity For Sounding Rocket And Balloon Flights
  • China to order up to 150 Airbus jets during Sarkozy visit: report
  • Time Magazine Recognizes The X-48B
  • Virgin to offer carbon offsets alongside drinks and perfume

  • US House to take up fuel efficiency standards after deal
  • NIST Measures Performance Of Auto Crash Warning Systems
  • German cars world champs, except in Germany
  • Honda Debuts All-New FCX Clarity Advanced Fuel Cell Vehicle

  • Boeing Demonstrates Maturity Of TSAT Encryption System
  • Northrop Grumman Qualifies Extended Data Rate Software For AEHF Military Communications Satellite
  • Lockheed Martin Delivers Key Satellite Hardware For New Military Communications System
  • Boeing Demonstrates FAB-T Multi-terminal Link Capability To USAF

  • BMD Base Games Part One
  • STSS's Second Satellite Completes Thermal Vacuum Testing At Northrop Grumman
  • US, Russians hold missile defense talks: Pentagon
  • Ex-Czech PM calls US anti-missile plan 'provocation': report

  • Scientists to discuss ways to 'climate-proof' crops
  • Noah's Flood Kick-Started European Farming
  • Greenpeace slams 'unsustainable' new tuna quota
  • FAO report urges paying poor farmers to be green

  • Massive landslide threatening homes in central Austria: authorities
  • More deaths as storms exit the Philippines
  • NORTHCOM Experience Lends Lessons To Bangladesh Relief
  • US marines assist stepped up relief effort in Bangladesh

  • 40th Anniversary Of Australia's First Satellite
  • Blue Dye Could Hold The Key To Super Processing Power
  • ESA And Inmarsat Sign Innovative Alphasat Satellite Contract
  • Dude, Big Screen TVs, Flexible Electronics And Surfboards Made From Same New Material

  • Humanoid teaches dentists to feel people's pain: researchers
  • Japan looks at everyday use of robots
  • New Japanese lightweight robot on wheels can talk
  • Can A Robot Find A Rock. Interview With David Wettergreen: Part IV

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement