Subscribe free to our newsletters via your
. GPS News .




EXO WORLDS
New Way of Probing Exoplanet Atmospheres
by Staff Writers
Leiden, The Netherlands (SPX) Jun 28, 2012


illustration only

For the first time a clever new technique has allowed astronomers to study the atmosphere of an exoplanet in detail - even though it does not pass in front of its parent star. An international team has used ESO's Very Large Telescope to directly catch the faint glow from the planet Tau Bootis b. They have studied the planet's atmosphere and measured its orbit and mass precisely for the first time - in the process solving a 15-year old problem.

Surprisingly, the team also finds that the planet's atmosphere seems to be cooler higher up, the opposite of what was expected. The results will be published in the 28 June 2012 issue of the journal Nature.

The planet Tau Bootis b [1] was one of the first exoplanets to be discovered back in 1996, and it is still one of the closest exoplanets known. Although its parent star is easily visible with the naked eye, the planet itself certainly is not, and up to now it could only be detected by its gravitational effects on the star. Tau Bootis b is a large "hot Jupiter" planet orbiting very close to its parent star.

Like most exoplanets, this planet does not transit the disc of its star (like the recent transit of Venus). Up to now such transits were essential to allow the study of hot Jupiter atmospheres: when a planet passes in front of its star it imprints the properties of the atmosphere onto the starlight. As no starlight shines through Tau Bootis b's atmosphere towards us, this means the planet's atmosphere could not be studied before.

But now, after 15 years of attempting to study the faint glow that is emitted from hot Jupiter exoplanets, astronomers have finally succeeded in reliably probing the structure of the atmosphere of Tau Bootis b and deducing its mass accurately for the first time.

The team used the CRIRES [2] instrument on the Very Large Telescope (VLT) at ESO's Paranal Observatory in Chile. They combined high quality infrared observations (at wavelengths around 2.3 microns) [3] with a clever new trick to tease out the weak signal of the planet from the much stronger one from the parent star [4].

Lead author of the study Matteo Brogi (Leiden Observatory, the Netherlands) explains: "Thanks to the high quality observations provided by the VLT and CRIRES we were able to study the spectrum of the system in much more detail than has been possible before. Only about 0.01% of the light we see comes from the planet, and the rest from the star, so this was not easy".

The majority of planets around other stars were discovered by their gravitational effects on their parent stars, which limits the information that can be gleaned about their mass: they only allow a lower limit to be calculated for a planet's mass [5].

The new technique pioneered here is much more powerful. Seeing the planet's light directly has allowed the astronomers to measure the angle of the planet's orbit and hence work out its mass precisely.

By tracing the changes in the planet's motion as it orbits its star, the team has determined reliably for the first time that Tau Bootis b orbits its host star at an angle of 44 degrees and has a mass six times that of the planet Jupiter in our own solar system.

"The new VLT observations solve the 15-year old problem of the mass of Tau Bootis b. And the new technique also means that we can now study the atmospheres of exoplanets that don't transit their stars, as well as measuring their masses accurately, which was impossible before", says Ignas Snellen (Leiden Observatory, the Netherlands), co-author of the paper. "This is a big step forward."

As well as detecting the glow of the atmosphere and measuring Tau Bootis b's mass, the team has probed its atmosphere and measured the amount of carbon monoxide present, as well as the temperature at different altitudes by means of a comparison between the observations and theoretical models.

A surprising result from this work was that the new observations indicated an atmosphere with a temperature that falls higher up. This result is the exact opposite of the temperature inversion - an increase in temperature with height - found for other hot Jupiter exoplanets [6] [7].

The VLT observations show that high resolution spectroscopy from ground-based telescopes is a valuable tool for a detailed analysis of non-transiting exoplanets' atmospheres.

The detection of different molecules in future will allow astronomers to learn more about the planet's atmospheric conditions. By making measurements along the planet's orbit, astronomers may even be able to track atmospheric changes between the planet's morning and evening.

"This study shows the enormous potential of current and future ground-based telescopes, such as the E-ELT. Maybe one day we may even find evidence for biological activity on Earth-like planets in this way", concludes Ignas Snellen.

Notes
[1] The name of the planet, Tau Bootis b, combines the name of the star (Tau Bootis) with the letter "b" indicating that this is the first planet found around this star. The designation Tau Bootis a is used for the star itself.

[2] CRyogenic InfraRed Echelle Spectrometer

[3] At infrared wavelengths, the parent star emits less light than in the optical regime, so this is a wavelength regime favorable for separating out the dim planet's signal.

[4] This method uses the velocity of the planet in orbit around its parent star to distinguish its radiation from that of the star and also from features coming from the Earth's atmosphere. The same team of astronomers tested this technique before on a transiting planet, measuring its orbital velocity during its crossing of the stellar disc.

[5] This is because the tilt of the orbit is normally unknown. If the planet's orbit is tilted relative to the line of sight between Earth and the star then a more massive planet causes the same observed back and forth motion of the star as a lighter planet in a less tilted orbit and it is not possible to separate the two effects.

[6] Thermal inversions are thought to be characterized by molecular features in emission in the spectrum, rather than in absorption, as interpreted from photometric observations of hot Jupiters with the Spitzer Space Telescope. The exoplanet HD 209458b is the best-studied example of thermal inversions in the exoplanet atmospheres.

[7] This observation supports models in which strong ultraviolet emission associated to chromospheric activity - similar to the one exhibited by the host star of Tau Bootis b - is responsible for the inhibition of the thermal inversion.

.


Related Links
ESO
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
SciTechTalk: Quick, name the planets!
Washington DC (UPI) Jun 24, 2012
When the prestigious Kavli Prize for Astrophysics was announced for 2012, one of the winners was Mike Brown, an astronomer working at the California Institute of Technology in California. Possibly not a household name, but Brown is the reason schoolchildren today are being taught our solar system is comprised of eight planets, not the nine we've been told of for more than seven decades. ... read more


EXO WORLDS
Pasta made from green banana flour a tasty alternative for gluten free diets

S. America cattle outbreak threat lingers

Philippines rice terraces off endangered list: UN

U.S. urges action on global cattle disease

EXO WORLDS
New technique allows simulation of noncrystalline materials

Study of phase change materials could lead to better computer memory

Japan's Renesas says major investors to offer aid

Megapixel camera? Try gigapixel

EXO WORLDS
Northrop Grumman's F-35 DAS and Radar Demonstrate Ability to Detect, Track, Target Ballistic Missiles

Canada to buy new jet trainer aircraft

LockMart Provides Italian MoD with Intelligence, Surveillance and Reconnaissance Aircraft

Variable camber airfoil: New concept, new challenge

EXO WORLDS
Primus Green Energy Alternative Gasoline Powers Car in Test Drive

Maths tells us when to be more alert on the roads

Rheinmetall shelves listing of automotive division

Nissan's China unit to build new $784 mn auto plant

EXO WORLDS
Hong Kong, China stock exchanges in joint venture

Intellectual property thefts are costly

Paraguay says neighbors plotting isolation

EU, US, Japan step up rare earths battle with China

EXO WORLDS
Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America

Scientists reconstruct pre-Columbian human effects on the Amazon Basin

EXO WORLDS
Arianespace to launch DZZ-HR high-resolution observation satellite

China to invest in Earth monitoring system

Delving Inside Earth from Space

Earth observation for us and our planet

EXO WORLDS
Researchers test carbon nanotube-based ultra-low voltage integrated circuits

Researchers tune the strain in graphene drumheads to create quantum dots

Graphene? From any lab!

Taming light with graphene




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement