Subscribe free to our newsletters via your
. GPS News .




INTERN DAILY
New Technique Allows Ultrasound To Penetrate Bone, Metal
by Staff Writers
Raleigh NC (SPX) Nov 21, 2014


Using a new technique, "it's as if the aberrating layer isn't even there," says researcher Yun Jing. Image courtesy Yun Jing.

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these so-called "aberrating layers."

"We've designed complementary metamaterials that will make it easier for medical professionals to use ultrasound for diagnostic or therapeutic applications, such as monitoring blood flow in the brain or to treat brain tumors," says Tarry Chen Shen, a Ph.D. student at NC State and lead author of a paper on the work.

"This has been difficult in the past because the skull distorts the ultrasound's acoustic field."

"These metamaterials could also be used in industrial settings," says Dr. Yun Jing, an assistant professor of mechanical and aerospace engineering at NC State and senior author of the paper. "For example, it would allow you to use ultrasound to detect cracks in airplane wings under the wing's metal 'skin.'"

Ultrasound imaging works by emitting high frequency acoustic waves. When those waves bounce off an object, they return to the ultrasound equipment, which translates the waves into an image.

But some materials, such as bone or metal, have physical characteristics that block or distort ultrasound's acoustic waves. These materials are called aberrating layers.

The researchers addressed this problem by designing customized metamaterial structures that take into account the acoustic properties of the aberrating layer and offsetting them. The metamaterial structure uses a series of membranes and small tubes to achieve the desired acoustic characteristics.

The researchers have tested the technique using computer simulations and are in the process of developing and testing a physical prototype.

In simulations, only 28 percent of ultrasound wave energy makes it past an aberrating layer of bone when the metamaterial structure is not in place. But with the metamaterial structure, the simulation shows that 88 percent of ultrasound wave energy passes through the aberrating layer.

"In effect, it's as if the aberrating layer isn't even there," Jing says.

The technique can be used for ultrasound imaging, as well as therapeutically - such as using ultrasound to apply energy to brain tumors, in order to burn them.

"An Anisotropic Complementary Acoustic Metamaterial for Cancelling out Aberrating Layers," is published online in the open access journal Physical Review X. The paper was co-authored by Drs. Jun Xu and Nicholas Fang at MIT. Jing acknowledges financial support from NC Space Grant via a New Investigator award. Xu and Fang acknowledge support from the Office of Naval Research under grant N00014-13-1-0631.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
North Carolina State University
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Better Cryopreservation could boost world blood supplies
Corvallis OR (SPX) Nov 18, 2014
Engineers at Oregon State University have identified a method to rapidly prepare frozen red blood cells for transfusions, which may offer an important new way to manage the world's blood supply. It's already possible to cryopreserve human red blood cells in the presence of 40 percent glycerol, but is rarely done because of the time-consuming process to thaw and remove the glycerol from the ... read more


INTERN DAILY
Dutch cull ducks amid bird flu fears in poultry heartland

Cocoa crunch: The worldwide chocolate shortage

Seychelles poachers go nutty for erotic shaped seed

Second bird flu outbreak found on Dutch farm

INTERN DAILY
Researchers engineer improvements of technology used in DRAM

New device could make large biological circuits practical

Magic tricks created using artificial intelligence for the first time

Researchers create and control spin waves for enhanced data processing

INTERN DAILY
Britain's RAF receives first A400M airlifter

France to buy 12 Airbus tankers worth 3 bn euros

F-35Cs complete initial testing from aircraft carrier

Elbit to Supply DIRCM Systems to German A400M Aircraft

INTERN DAILY
Uber hits brakes on talk of finding dirt on reporters

Dongfeng, Huawei partner for Internet-enabled cars

Toyota rolls out world's first mass market fuel-cell car

QUT leading the charge for panel-powered car

INTERN DAILY
Nicaragua $50 bn canal construction to start in December

Worldwide ship traffic up 300 percent since 1992

China, Myanmar ink $7.8 bn in deals: state media

EU report laments lack of free trade

INTERN DAILY
As elephants go, so go the trees

Clues to trees' salt tolerance found in native habitat, leaf traits

Deforestation in Brazil's Amazon 'surges 450%'

Protecting forests alone would not halt land-use change emissions

INTERN DAILY
NASA Computer Model Provides a New Portrait of Carbon Dioxide

NASA's New Wind Watcher Ready for Weather Forecasters

GOES-S Satellite EXIS Instrument Passes Final Review

NASA Lining up ICESat-2's Laser-catching Telescope

INTERN DAILY
Ultra-short X-ray pulses explore the nano world

Penn engineers efficiently 'mix' light at the nanoscale

On-demand conductivity for graphene nanoribbons

Measuring nano-vibrations




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.