GPS News  
SHAKE AND BLOW
New System Can Warn of Tsunamis Within Minutes

Tsunami earthquakes typically rupture more slowly, last longer and are less efficient at radiating energy, so when RTerg uses its algorithmic tools to find a quake matching these attributes, it sends an alert to the National Oceanic and Atmospheric Administration's Pacific Tsunami Warning Center as well as the United States Geological Survey's National Earthquake Information Center.
by Staff Writers
Atlanta GA (SPX) Mar 07, 2011
Seismologists have developed a new system that could be used to warn future populations of an impending tsunami only minutes after the initial earthquake. The system, known as RTerg, could help reduce the death toll by giving local residents valuable time to move to safer ground. The study by researchers at the Georgia Institute of Technology appears in the March 5 edition of Geophysical Research Letters.

"We developed a system that, in real time, successfully identified the magnitude 7.8 2010 Sumatran earthquake as a rare and destructive tsunami earthquake. Using this system, we could in the future warn local populations, thus minimizing the death toll from tsunamis," said Andrew Newman, assistant professor in the School of Earth and Atmospheric Sciences.

Typically, a large subduction zone earthquake ruptures at a rate near 3 kilometers/second and anywhere from 20 kilometers to 50 kilometers below the earth's surface.

Because of the depth, vertical deformation of the crust is horizontally smoothed, causing the size of uplift to remain rather small. When these earthquakes occur in the ocean, the resulting waves may only measure about 20 centimeters high for a magnitude 7.8 event.

Tsunami earthquakes, however, are a rare class of earthquakes that rupture more slowly, at 1-1.5 kilometers /second and propagate up to the sea floor, near the trench.

This makes the vertical uplift much larger, resulting in nearby wave heights up to 10- 20 meters in nearby coastal environments. Such is the case of the Sumatran earthquake with reported wave heights of up to 17 meters, causing a death toll of approximately 430 people.

"Because tsunami earthquakes rupture in a shallow environment, we can't simply use a measurement of magnitude to determine which ones will create large waves," said Newman. "When they occur, people often don't feel that they're significant, if they even feel them in the first place, because they seem like they're an order of magnitude smaller than they actually are."

Tsunami earthquakes typically rupture more slowly, last longer and are less efficient at radiating energy, so when RTerg uses its algorithmic tools to find a quake matching these attributes, it sends an alert to the National Oceanic and Atmospheric Administration's Pacific Tsunami Warning Center as well as the United States Geological Survey's National Earthquake Information Center.

Here's how it works. Usually within four minutes, RTerg gets a notification from one of the tsunami warning centers that an earthquake has occurred. This notice gives the system the quake's location, depth and approximate magnitude.

If the earthquake is determined to be of magnitude 6.5 or higher, it takes about a minute to request and receive data from around 150 seismic stations around the world. Once it collects this data, it uses its algorithm to run through every second of the rupture and determine the incremental growth of energy and ascertain whether the quake was a tsunami earthquake.

Newman and his team have used seismology readings from previous tsunami earthquakes, such as the one in Nicaragua in 1992 and the one that hit Java in 2006, but the Sumatran event was the first tsunami quake that occurred when RTerg was online in real time.

With that quake, the system identified the event as a potential tsunami earthquake after eight and a half minutes, and sent a notification out shortly thereafter. When applied to a production warning system, the tool will be most valuable, since analysts are available 24/7 to evaluate the algorithm results.

"For most tsunami earthquakes, inundation of the coastal environment doesn't occur until about 30-40 minutes after the quake. So we'll have about 20-30 minutes to get our information to an automatic warning system, or to the authorities," said Newman. "This gives us a tangible amount of time to get people out of the way."

Currently, Newman and his team are working to test and implement a technique for RTerg that could shave another minute or more from the warning time. In addition, they are planning to rewrite the algorithm so that it can be used at all U.S. and international warning centers.

Seismologists have developed a new system that could be used to warn future populations of an impending tsunami only minutes after the initial earthquake. The system, known as RTerg, could help reduce the death toll by giving local residents valuable time to move to safer ground. The study by researchers at the Georgia Institute of Technology appears in the March 5 edition of Geophysical Research Letters.

"We developed a system that, in real time, successfully identified the magnitude 7.8 2010 Sumatran earthquake as a rare and destructive tsunami earthquake. Using this system, we could in the future warn local populations, thus minimizing the death toll from tsunamis," said Andrew Newman, assistant professor in the School of Earth and Atmospheric Sciences.

Typically, a large subduction zone earthquake ruptures at a rate near 3 kilometers/second and anywhere from 20 kilometers to 50 kilometers below the earth's surface.

Because of the depth, vertical deformation of the crust is horizontally smoothed, causing the size of uplift to remain rather small. When these earthquakes occur in the ocean, the resulting waves may only measure about 20 centimeters high for a magnitude 7.8 event.

Tsunami earthquakes, however, are a rare class of earthquakes that rupture more slowly, at 1-1.5 kilometers /second and propagate up to the sea floor, near the trench. This makes the vertical uplift much larger, resulting in nearby wave heights up to 10- 20 meters in nearby coastal environments. Such is the case of the Sumatran earthquake with reported wave heights of up to 17 meters, causing a death toll of approximately 430 people.

"Because tsunami earthquakes rupture in a shallow environment, we can't simply use a measurement of magnitude to determine which ones will create large waves," said Newman. "When they occur, people often don't feel that they're significant, if they even feel them in the first place, because they seem like they're an order of magnitude smaller than they actually are."

Tsunami earthquakes typically rupture more slowly, last longer and are less efficient at radiating energy, so when RTerg uses its algorithmic tools to find a quake matching these attributes, it sends an alert to the National Oceanic and Atmospheric Administration's Pacific Tsunami Warning Center as well as the United States Geological Survey's National Earthquake Information Center.

Here's how it works. Usually within four minutes, RTerg gets a notification from one of the tsunami warning centers that an earthquake has occurred. This notice gives the system the quake's location, depth and approximate magnitude.

If the earthquake is determined to be of magnitude 6.5 or higher, it takes about a minute to request and receive data from around 150 seismic stations around the world. Once it collects this data, it uses its algorithm to run through every second of the rupture and determine the incremental growth of energy and ascertain whether the quake was a tsunami earthquake.

Newman and his team have used seismology readings from previous tsunami earthquakes, such as the one in Nicaragua in 1992 and the one that hit Java in 2006, but the Sumatran event was the first tsunami quake that occurred when RTerg was online in real time.

With that quake, the system identified the event as a potential tsunami earthquake after eight and a half minutes, and sent a notification out shortly thereafter. When applied to a production warning system, the tool will be most valuable, since analysts are available 24/7 to evaluate the algorithm results.

"For most tsunami earthquakes, inundation of the coastal environment doesn't occur until about 30-40 minutes after the quake. So we'll have about 20-30 minutes to get our information to an automatic warning system, or to the authorities," said Newman. "This gives us a tangible amount of time to get people out of the way."

Currently, Newman and his team are working to test and implement a technique for RTerg that could shave another minute or more from the warning time. In addition, they are planning to rewrite the algorithm so that it can be used at all U.S. and international warning centers.







Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Georgia Institute of Technology
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


SHAKE AND BLOW
Tsunami warning system described
Atlanta (UPI) Mar 4, 2011
U.S. seismologists say they've developed a system that could warn of an impending tsunami within minutes of an earthquake, giving time to safely evacuate. The system, dubbed RTerg, is the work of researchers at the Georgia Institute of Technology and is described in the journal Geophysical Research Letters, an institute release said Friday. "We developed a system that, in real ti ... read more







SHAKE AND BLOW
A Research Study Reveals The Deterioration In The Mediterranean Farmland Patrimony

Asia rice output threatened by pesticide overuse

Diversifying Crops May Protect Yields Against A More Variable Climate

Modified alfalfa stirs debate in Texas

SHAKE AND BLOW
New Generation Of Optical Integrated Devices For Future Quantum Computers

JQI Physicists Demonstrate Coveted Spin-Orbit Coupling In Atomic Gases

New MIT Developments In Quantum Computing

Development Team Achieves One Terabit per Second Data Rate On Single Integrated Photonic Chip

SHAKE AND BLOW
EADS will not protest Boeing tanker contract

Chinese plane maker buys US Cirrus

US "air capital" savors Boeing tanker victory

China to spend $230 bn on aviation sector

SHAKE AND BLOW
Clean Fuel Worsens Climate Impacts For Some Vehicle Engines

Ford probing allegations of China worker abuse

Coda to sell China-made electric car in US in 2011

Vinci hopes to begin building Moscow highway in 2011

SHAKE AND BLOW
Mattel closes Barbie concept store in China

Sun is shining on Asian tourism trade

From sports cars to slums: China's huge wealth gap

Asian models all the rage in luxury world

SHAKE AND BLOW
Scientists Study Control Of Invasive Tree In Western US

Four New Species Of Zombie Ant Fungi Discovered

Climate Change Causing Demise Of Lodgepole Pine In Western North America

Bacteria Living On Old-Growth Trees May Help Forests Grow

SHAKE AND BLOW
GOCE Delivers On Its Promise

NASA reels from climate science setbacks

NASA's Bolden defends Earth science

New Day Dawns For Satellite To Study Earth's Ozone Layer

SHAKE AND BLOW
Australia plans carbon pricing

Curved Carbon For Electronics Of The Future

New Research Shows How Light Can Control Electrical Properties Of Graphene

EPA to defer greenhouse gas permitting


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement