GPS News  
TECH SPACE
New ORNL catalyst features unsurpassed selectivity
by Staff Writers
Oak Ridge TN (SPX) Nov 06, 2015


Oak Ridge National Laboratory's new catalyst is capable of selective oxidation of cyclohexane to cyclohexanol and cyclohexanone. Image courtesy ORNL. For a larger version of this image please go here.

Catalysts that power chemical reactions to produce the nylon used in clothing, cookware, machinery and electronics could get a lift with a new formulation that saves time, energy and natural resources.

The catalyst developed by researchers at the Department of Energy's Oak Ridge National Laboratory and highlighted in a paper published in Nature Communications features unprecedented selectivity and a conversion rate nearly twice that of conventional catalysts.

Selectivity refers to the ability to target a specific chemical bond. It is also significant that the catalyst can break the carbon-hydrogen bonds in hydrocarbons such as cyclohexane, the precursor of nylon, without using noble metals. This has been considered a bottle-neck step in the production of nylon.

"The greater the selectivity, the more products that can be derived," said ORNL chemist and lead author Sheng Dai of the Chemical Sciences Division. "The catalyst is the main ingredient to speed up desired chemical reactions, and we have created one for synthesizing the nylon precursor that is especially effective at activating the carbon-hydrogen bonds."

ORNL's successful approach lies in the formation of an ultrahigh concentration of active sites - for breaking the carbon-hydrogen bonds - from a 50-50 atomistic mixture of manganese oxide and cerium oxide.

This creates a catalyst that is extremely porous and features a high surface area, making it efficient at breaking these bonds. The high efficiency, or conversion rate, of the ORNL catalyst means more nylon can be produced from cyclohexane in less time.

Dai emphasized that this success was a team effort as he enlisted the help of ORNL postdoctoral research associate Pengfei Zhang, visiting scholar Hanfeng Lu of Zhejiang University and others to test his concept.

"Our catalyst has created a sustainable way to prepare complex mesoporous metal oxides and demonstrates outstanding performance in the selective oxidation of various hydrocarbons by oxidation," Zhang said.

The paper, titled "Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons," is available here. Other authors were Li Zhang, Zilu Wu, Shize Yang and Hongliang Shi of ORNL, Ying Zhou, Quilian Zhu and Yinfei Chen of Zhejiang University and Shize Yang and Hongliang Shi of the University of Tennessee.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Microscopy unveils lithium-rich transition metal oxides
Berkeley CA (SPX) Nov 06, 2015
Using complementary microscopy and spectroscopy techniques, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) say they have solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered. Researchers have been divided into three schools of tho ... read more


TECH SPACE
Climate change is good news for English wine

Researchers uncover the history of rice cultivation

Cow-calf grazing practices could mitigate greenhouse gas emissions

Faster digestion in kangaroos reduces methane emissions

TECH SPACE
Mimicing quantum entanglement with laser to double data speeds

Upgrading the quantum computer

The world's fastest nanoscale photonics switch

China state-owned firm to build $15 bn chip plant

TECH SPACE
U.S. Army contracts Raytheon for FMS aircraft communications support

Subscale Glider Makes First Flight

Lockheed Martin and Boeing protest LRS-B contract award

Italy completes first F-35 mission

TECH SPACE
Fitch slashes VW ratings over poor management of pollution fraud

Making cars of the future stronger, using less energy

Moody's downgrades VW as toll from emissions scandal grows

Nissan boosts annual outlook on new models, N.America sales

TECH SPACE
Japan's six-month current account surplus quadruples

Record China trade surplus highlights struggle to boost demand

China applies to join European reconstruction bank

Trade trumps hostility for S. Korea-China-Japan summit

TECH SPACE
Peru creates huge national park in Amazon basin

OECD warns Brazil on environment, economy risks

After 5,000 years, Britian's Fortingall Yew is turning female

Amazonian natives had little impact on land, new research finds

TECH SPACE
Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

Curtiss-Wright and Harris bring digital map solutions to rugged systems

OGC and ASPRS to collaborate on geospatial standards

TECH SPACE
Researchers build nanoscale autonomous walking machine from DNA

New way of computing with interaction-dependent nanomagnets

Finally a promising natural nanomaterial

Umbrella-shaped diamond nanostructures make efficient photon collectors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.