Subscribe free to our newsletters via your
. GPS News .




DEEP IMPACT
New Clues To The Early Solar System From Ancient Meteorites
by Staff Writers
Washington DC (SPX) Jul 25, 2012


File image.

In order to understand Earth's earliest history - its formation from solar system material into the present-day layering of metal core and mantle, and crust - scientists look to meteorites.

New research from a team including Carnegie's Doug Rumble and Liping Qin focuses on one particularly old type of meteorite called diogenites. These samples were examined using an array of techniques, including precise analysis of certain elements for important clues to some of the solar system's earliest chemical processing. Their work is published online July 22 by Nature Geoscience.

At some point after terrestrial planets or large bodies accreted from surrounding solar system material, they differentiate into a metallic core, a silicate mantle, and a crust.

This involved a great deal of heating. The sources of this heat are the decay of short-lived radioisotopes, the energy conversion that occurs when dense metals are physically separated from lighter silicate, and the impact of large objects. Studies indicate that the Earth's and Moon's mantles may have formed more than 4.4 billion years ago, and Mars's more than 4.5 billion years ago.

Theoretically, when a planet or large body differentiates enough to form a core, certain elements including osmium, iridium, ruthenium, platinum, palladium, and rhenium - known as highly siderophile elements - are segregated into the core. But studies show that mantles of the Earth, Moon and Mars contain more of these elements than they should.

Scientists have several theories about why this is the case and the research team - which included lead author James Day of Scripps Institution of Oceanography and Richard Walker of the University of Maryland - set out to explore these theories by looking at diogenite meteorites.

Diogenites are a kind of meteorite that may have come from the asteroid Vesta, or a similar body. They represent some of the solar system's oldest existing examples of heat-related chemical processing.

What's more, Vesta or their other parent bodies were large enough to have undergone a similar degree of differentiation to Earth, thus forming a kind of scale model of a terrestrial planet.

The team examined seven diogenites from Antarctica and two that landed in the African desert. They were able to confirm that these samples came from no fewer than two parent bodies and that the crystallization of their minerals occurred about 4.6 billion years ago, only 2 million years after condensation of the oldest solids in the solar system.

Examination of the samples determined that the highly siderophile elements present in the diogenite meteorites were present during formation of the rocks, which could only occur if late addition or 'accretion' of these elements after core formation had taken place. This timing of late accretion is earlier than previously thought, and much earlier than similar processes are thought to have occurred on Earth, Mars, or the Moon.

Remarkably, these results demonstrate that accretion, core formation, primary differentiation, and late accretion were all accomplished in just over 2 to 3 million years on some parent bodies.

In the case of Earth, there followed crust formation, the development of an atmosphere, and plate tectonics, among other geologic processes, so the evidence for this early period is no longer preserved.

"This new understanding of diogenites gives us a better picture of the earliest days of our solar system and will help us understand the Earth's birth and infancy," Rumble said. "Clearly we can now see that early events in planetary formation set the stage very quickly for protracted subsequent histories."

.


Related Links
Carnegie Science
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








DEEP IMPACT
Caltech scientists find new primitive mineral in meteorite
Pasadena CA (SPX) Jun 29, 2012
In 1969, an exploding fireball tore through the sky over Mexico, scattering thousands of pieces of meteorite across the state of Chihuahua. More than 40 years later, the Allende meteorite is still serving the scientific community as a rich source of information about the early stages of our solar system's evolution. Recently, scientists from the California Institute of Technology (Caltech) disco ... read more


DEEP IMPACT
Lighting up the plant hormone 'command system'

New method for associating genetic variation with crop traits

Clemson plant breeders roll out new oat variety

Researchers develop ginseng-fortified milk to improve cognitive function

DEEP IMPACT
Chips with self-assembling rectangles

Getting Amped

Frog calls inspire a new algorithm for wireless networks

Unique properties of graphene lead to a new paradigm for low-power telecommunications

DEEP IMPACT
International F-35 Fleet Begins Build Up At Eglin AFB

US 'confident' F-22 jet oxygen problems solved

European hybrid helicopter finishes US tour

United Kingdom Accepts First International Lockheed Martin F-35

DEEP IMPACT
Mechanical engineers develop an 'intelligent co-pilot' for cars

Calling all truckers ... not!

Skoda Auto posts record first-half sales on China surge

Carnegie Mellon's smart headlight system will have drivers seeing through the rain

DEEP IMPACT
Australia bank chief upbeat on China

EU regulators suspect worldwide cartel in CD, DVD drives

China's Citic Securities to buy CLSA for $1.25 bln

Where the world's perfumes come to rest

DEEP IMPACT
Climate change and deforestation: When the past influences the present

Buddha tree alive and healthy at age 2,500

Dutch trees get a second life turned into tables

Hidden secrets in Norway's rainforests

DEEP IMPACT
Earth-observing Camera Launches to International Space Station

Landsat Looks and Sees

Why Is Earth So Dry?

GeoEye Signs Two New Seven-Figure GeoEye-1 Imagery Contracts

DEEP IMPACT
Researchers Create Highly Conductive and Elastic Conductors Using Silver Nanowires

Silver nanoparticle synthesis using strawberry tree leaf

UK nanodevice builds electricity from tiny pieces

Ferroelectricity on the Nanoscale




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement