Subscribe free to our newsletters via your
. GPS News .




ABOUT US
Nasty noises: Why do we recoil at unpleasant sounds
by Staff Writers
Newcastle UK (SPX) Oct 15, 2012


illustration only

Heightened activity between the emotional and auditory parts of the brain explains why the sound of chalk on a blackboard or a knife on a bottle is so unpleasant. In a study published in the Journal of Neuroscience and funded by the Wellcome Trust, Newcastle University scientists reveal the interaction between the region of the brain that processes sound, the auditory cortex, and the amygdala, which is active in the processing of negative emotions when we hear unpleasant sounds.

Brain imaging has shown that when we hear an unpleasant noise the amygdala modulates the response of the auditory cortex heightening activity and provoking our negative reaction.

"It appears there is something very primitive kicking in," says Dr Sukhbinder Kumar, the paper's author from Newcastle University. "It's a possible distress signal from the amygdala to the auditory cortex."

Researchers at the Wellcome Trust Centre for Neuroimaging at UCL and Newcastle University used functional magnetic resonance imaging (fMRI) to examine how the brains of 13 volunteers responded to a range of sounds. Listening to the noises inside the scanner they rated them from the most unpleasant - the sound of knife on a bottle - to pleasing - bubbling water. Researchers were then able to study the brain response to each type of sound.

Researchers found that the activity of the amygdala and the auditory cortex varied in direct relation to the ratings of perceived unpleasantness given by the subjects. The emotional part of the brain, the amygdala, in effect takes charge and modulates the activity of the auditory part of the brain so that our perception of a highly unpleasant sound, such as a knife on a bottle, is heightened as compared to a soothing sound, such as bubbling water.

Analysis of the acoustic features of the sounds found that anything in the frequency range of around 2,000 to 5,000 Hz was found to be unpleasant. Dr Kumar explains: "This is the frequency range where our ears are most sensitive. Although there's still much debate as to why our ears are most sensitive in this range, it does include sounds of screams which we find intrinsically unpleasant."

Scientifically, a better understanding of the brain's reaction to noise could help our understanding of medical conditions where people have a decreased sound tolerance such as hyperacusis, misophonia (literally a "hatred of sound") and autism when there is sensitivity to noise.

Professor Tim Griffiths from Newcastle University, who led the study, says: "This work sheds new light on the interaction of the amygdala and the auditory cortex. This might be a new inroad into emotional disorders and disorders like tinnitus and migraine in which there seems to be heightened perception of the unpleasant aspects of sounds."

.


Related Links
Newcastle University
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ABOUT US
Chimps said attacking humans in Africa
Kinshasha, Democratic Republic Of Congo (UPI) Oct 11, 2012
Habitat loss may be the cause of some violent attacks by chimpanzees on humans in the war-torn eastern Democratic Republic of the Congo, scientists say. At least one person, a child, has been killed in recent months in a chimpanzee attack just south of Virunga National Park in the area around the city of Goma, park officials said. The park lies on the border between the DRC, Ugan ... read more


ABOUT US
Gene Suppression Can Reduce Cold-induced Sweetening in Potatoes

Nepal culls chickens amid bird flu outbreak

Strengthening a billion-dollar gene in soybeans

Nasdaq OMX, China's Dalian Commodity team up

ABOUT US
Japan Inc to save Renesas for $2.5 bn: report

A complex logic circuit made from bacterial genes

Invisibility could be a key to better electronics

Organic solar cells with high electric potential for portable electronics

ABOUT US
Chile deploys Israel's RecceLite system

Quickstep moves on Hercules order

Boeing: Boeing Receives $2 Billion C-17 Aircraft Sustainment Contract

Two flights grounded in China after phone threats: airline

ABOUT US
Volvo Cars suspends production at Swedish plant

Tycoon offers Chinese cars for Japanese amid row

China's September auto sales fall on Japan row

Japan's Toyota to recall 7.43 mn vehicles globally

ABOUT US
Mexico takes textile dispute with China to the WTO

London Metal Exchange hopeful of 2012 takeover completion

China IMF boycott 'a sign of things to come': analysts

China exports jump but weakness seen ahead

ABOUT US
Research shows legume trees can fertilize and stabilize maize fields, generate higher yields

China to up reforestation

SciTechTalk: Amazon's 'razor blade' choice

Study finds nearly 50% of retail firewood infested with insects

ABOUT US
GMES for Europe

Boeing Releases Updated Geospatial Data Management Tool

First images from e2v imaging sensors on SPOT 6 Earth observation satellite

New Commercial Imaging Spacecraft Progressing at Lockheed Martin as IKONOS Satellite Achieves 13 Years in Operations

ABOUT US
Queen's develops new environmentally friendly MOF production method

Drawing a line, with carbon nanotubes

Nano-hillocks: Of mountains and craters

Nanoparticles Glow Through Thick Layer of Tissue




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement