Subscribe free to our newsletters via your
. GPS News .




SOLAR DAILY
Nanowires Have the Power to Revolutionize Solar Energy
by Hillary Sanctuary for EPFL
Zurich, Switzerland (SPX) Apr 11, 2013


The nanowire standing vertically essentially acts like a very efficient light funnel. Even though the nanowire is only a few hundred nanometers in diameter, it absorbs light as though it were 12 times bigger. In other words, it has a greater field of vision than expected.

Imagine a solar panel more efficient than today's best solar panels, but using 10 000 times less material. This is what EPFL researchers expect given recent findings on these tiny filaments called nanowires. Solar technology integrating nanowires could capture large quantities of light and produce energy with incredible efficiency at a much lower cost. This technology is possibly the future for powering microchips and the basis for a new generation of solar panels.

Despite their size, nanowires have tremendous potential for energy production. "These nanowires capture much more light than expected," says Anna Fontcuberta i Morral about her research, published on 24 March 2013 in Nature Photonics.

Nanowires are extremely tiny filaments-in this case able to capture light-with a diameter that measures tens to hundreds of nanometers, where a nanometer is one millionth of a millimeter. These miniscule wires are up to 1000 times smaller than the diameter of human hair, or comparable in diameter to the size of viruses. When equipped with the right electronic properties, the nanowire becomes a tiny solar cell, transforming sunlight into electric current. Anna Fontcuberta i Morral and her team built a nanowire solar cell out of gallium arsenide, a material which is better at converting light into power than silicon. They found that it actually collects more light than the usual flat solar cell-up to 12 times more-and more light means more energy.

The nanowire standing vertically essentially acts like a very efficient light funnel. Even though the nanowire is only a few hundred nanometers in diameter, it absorbs light as though it were 12 times bigger. In other words, it has a greater field of vision than expected.

Fontcuberta's prototype is already almost 10% more efficient at transforming light into power than allowed, in theory, for conventional single material solar panels. Furthermore, optimizing the dimensions of the nanowire, improving the quality of the gallium arsenide and using better electrical contacts to extract the current could increase the prototype's efficiency.

Arrays of nanowire solar cells offer new prospects for energy production. This study suggests that an array of nanowires may attain 33% efficiency, in practice, whereas commercial (flat) solar panels are now only up to 20% efficient. Also, arrays of nanowires would use at least 10 000 times less gallium arsenide, allowing for industrial use of this costly material. Translating this into dollars for gallium arsenide, the cost would only be $10 per square meter instead of $100 000.

Free to the engineer's imagination to mount these nanowires onto a variety of substrate panels, be it lightweight, flexible or designed to withstand the harshest of conditions. In a world where energy consumption is on the rise, these nanowires may one day power everything from your favorite gadget to space missions to Mars.

.


Related Links
EPFL
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Global solar photovoltaic industry is likely now a net energy producer
Stanford CA (SPX) Apr 11, 2013
The rapid growth of the solar power industry over the past decade may have exacerbated the global warming situation it was meant to soothe, simply because most of the energy used to manufacture the millions of solar panels came from burning fossil fuels. That irony, according to Stanford University researchers, is coming to an end. For the first time since the boom started, the electricity ... read more


SOLAR DAILY
Residents in China ordered to cull birds: media

Cuba faces vast land losses as sea levels rise

Got baby milk? Chinese dealers strip shelves worldwide

Population boom poses interconnected challenges of energy, food, water

SOLAR DAILY
Redesigned Material Could Lead to Lighter, Faster Electronics

A step toward optical transistors?

New 'transient electronics' disappear when no longer needed

World Record Silicon-based Millimeter-wave Power Amplifiers

SOLAR DAILY
Israel boosts air force 'pack of leopards

More delays in Brazil air force upgrades

Fasten seatbelts for bumpier flights: climate study

Hong Kong airbridge collapse rips off plane door

SOLAR DAILY
China March auto sales hit record high: group

Yamaha plans $500 bike in India, eyes exports to China

US announces stricter gasoline standards

Japan venture to bring electric tuk-tuks to Asia

SOLAR DAILY
Santos: Latin America's top port faces logistical woes

China records March trade deficit of $880 mn

Talks fail to break Hong Kong port strike

France's Bourbon in $1.5 bn vessel deal with China's ICBC

SOLAR DAILY
Activist silenced as China island forests destroyed

SFU researchers help unlock pine beetle's Pandora's box

Russian activists angry after attacked journalist's death

Russian forest campaigner dies after 2008 attack

SOLAR DAILY
Ball Aerospace Begins Integration Phase for DigitalGlobe's WorldView-3 Satellite

RADARSAT-1 Malfunction

Satellite Sandwich Technique Improves Analysis of Geographical Data

National Security Drives Growth for GIS Professionals in Government Sector

SOLAR DAILY
Surface diffusion plays a key role in defining the shapes of catalytic nanoparticles

Imaging methodology reveals nano details not seen before

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement