GPS News  
CHIP TECH
Nanostructured surfaces for future quantum computer chips
by Staff Writers
Paderborn, Germany (SPX) Jun 23, 2022

Concept of asymmetric parametric generation of images with a nonlinear metasurface.

Quantum computers are one of the key future technologies of the 21st century. Researchers at Paderborn University, working under Professor Thomas Zentgraf and in cooperation with colleagues from the Australian National University and Singapore University of Technology and Design, have developed a new technology for manipulating light that can be used as a basis for future optical quantum computers. The results have now been published in the internationally renowned professional journal Nature Photonics.

New optical elements for manipulating light will allow for more advanced applications in modern information technology, particularly in quantum computers. However, a major challenge that remains is non-reciprocal light propagation through nanostructured surfaces, where these surfaces have been manipulated at a tiny scale.

Professor Thomas Zentgraf, head of the working group for ultrafast nanophotonics at Paderborn University, explains, "In reciprocal propagation, light can take the same path forward and backward through a structure; however, non-reciprocal propagation is comparable to a one-way street where it can only spread out in one direction."

Non-reciprocity is a special characteristic in optics that causes light to produce different material characteristics when its direction is reversed. One example would be a window made of glass that is transparent from one side and lets light through, but which acts as a mirror on the other side and reflects the light. This is known as duality. "In the field of photonics, such a duality can be very helpful in developing innovative optical elements for manipulating light," says Zentgraf.

In a current collaboration between his working group at Paderborn University and researchers at the Australian National University and Singapore University of Technology and Design, non-reciprocal light propagation was combined with a frequency conversion of laser light, in other words a change in the frequency and thus also the colour of the light.

"We used the frequency conversion in the specially designed structures, with dimensions in the range of a few hundred nanometres, to convert infrared light - which is invisible to the human eye - into visible light," explains Dr. Sergey Kruk, Marie Curie Fellow in Zentgraf's group.

The experiments show that this conversion process takes place only in one illumination direction for the nanostructured surface, while it is completely suppressed in the opposite illumination direction. This duality in the frequency conversion characteristics was used to code images into an otherwise transparent surface.

"We arranged the various nanostructures in such a way that they produce a different image depending on whether the sample surface is illuminated from the front or the back," says Zentgraf, adding, "The images only became visible when we used infrared laser light for the illumination."

In their first experiments, the intensity of the frequency-converted light within the visible range was still very small. The next step, therefore, is to further improve efficiency so that less infrared light is needed for the frequency conversion.

In future optically integrated circuits, the direction control for the frequency conversion could be used to switch light directly with a different light, or to produce specific photon conditions for quantum-optical calculations directly on a small chip.

"Maybe we will see an application in future optical quantum computers where the directed production of individual photons using frequency conversion plays an important role," says Zentgraf.

Research Report:Asymmetric parametric generation of images with nonlinear dielectric metasurfaces


Related Links
Paderborn University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
A golden ticket to smaller electronics
Osaka, Japan (SPX) Jun 23, 2022
Scientists from the Flexible 3D-System Integration Laboratory at Osaka University developed a new method for the direct three-dimensional bonding of copper electrodes using silver, which can reduce the cost and energy requirements of new electronic devices. This work may help in the design of next-generation smart devices that are more compact and use less electricity. Three-dimensional integrated circuits are playing an increasingly important role in electronic devices. Compared with conventional ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Dutch farmers protest livestock cuts to curb nitrogen

Using firefly genes to understand cannabis biology

EU lays out plan to halve pesticide use, save bees

South Africa's latest hot export to China? Donkeys

CHIP TECH
Nanostructured surfaces for future quantum computer chips

A golden ticket to smaller electronics

Controlled synthesis of crystal flakes paves path for advanced future electronics

A quantum drum that stores quantum states for record-long times

CHIP TECH
easyJet signs up for space-enabled digital skies

Netherlands to limit flights at Amsterdam's main airport

Iran fighter jet crashes, injuring two crew: reports

Air industry could fly back into black next year, IATA says

CHIP TECH
Swedish electric carmaker Polestar announces NY listing

Researchers release open-source photorealistic simulator for autonomous driving

No petrol, no cars: Cubans turn to electric transport

Tesla driver-assistance involved in 273 US crashes: report

CHIP TECH
Stocks bounce as China eases quarantine measures

BRICS nations call for Ukraine-Russia talks in declaration

US tariffs on China over 'leverage' in trade talks: official

EU sharpens labour, environment demands in trade deals

CHIP TECH
Indigenous farewell for expert killed in Amazon

Funeral held in Brazil for slain British journalist

Bipartisan group defends sequoia tree bill in California despite opposition

Bodies of two men murdered in Brazilian Amazon returned to families

CHIP TECH
How do you process space data and imagery in low earth orbit?

Freedom's Fortress

NASA's ECOSTRESS sees Las Vegas streets turn up the heat

German radar satellite TerraSAR-X - 15 years in space and still in perfect shape

CHIP TECH
New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

Seeing more deeply into nanomaterials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.