GPS News  
CARBON WORLDS
Nanoscrolls created from graphene's imperfect cousin
by Staff Writers
Boston MA (SPX) Apr 22, 2016


An electron microscopy image shows many examples of nanoscrolls. The insert zooms in on a single nanoscroll and reveals its conical nature. Image courtesy of the researchers.

Water filters of the future may be made from billions of tiny, graphene-based nanoscrolls. Each scroll, made by rolling up a single, atom-thick layer of graphene, could be tailored to trap specific molecules and pollutants in its tightly wound folds. Billions of these scrolls, stacked layer by layer, may produce a lightweight, durable, and highly selective water purification membrane.

But there's a catch: Graphene does not come cheap. The material's exceptional mechanical and chemical properties are due to its very regular, hexagonal structure, which resembles microscopic chicken wire. Scientists take great pains in keeping graphene in its pure, unblemished form, using processes that are expensive and time-consuming, and that severely limit graphene's practical uses.

Seeking an alternative, a team from MIT and Harvard University is looking to graphene oxide - graphene's much cheaper, imperfect form. Graphene oxide is graphene that is also covered with oxygen and hydrogen groups. The material is essentially what graphene becomes if it's left to sit out in open air. The team fabricated nanoscrolls made from graphene oxide flakes and was able to control the dimensions of each nanoscroll, using both low- and high-frequency ultrasonic techniques. The scrolls have mechanical properties that are similar to graphene, and they can be made at a fraction of the cost, the researchers say.

"If you really want to make an engineering structure, at this point it's not practical to use graphene," says Itai Stein, a graduate student in MIT's Department of Mechanical Engineering. "Graphene oxide is two to four orders of magnitude cheaper, and with our technique, we can tune the dimensions of these architectures and open a window to industry."

Stein says graphene oxide nanoscrolls could also be used as ultralight chemical sensors, drug delivery vehicles, and hydrogen storage platforms, in addition to water filters. Stein and Carlo Amadei, a graduate student at Harvard University, have published their results in the journal Nanoscale.

Getting away from crumpled graphene
The team's paper originally grew out of an MIT class, 2.675 (Micro/Nano Engineering), taught by Rohit Karnik, associate professor of mechanical engineering. As part of their final project, Stein and Amadei teamed up to design nanoscrolls from graphene oxide. Amadei, as a member of Professor Chad Vecitis' lab at Harvard University, had been working with graphene oxide for water purification applications, while Stein was experimenting with carbon nanotubes and other nanoscale architectures, as part of a group led by Brian Wardle, professor of aeronautics and astronautics at MIT.

"Our initial idea was to make nanoscrolls for molecular adsorption," Amadei says. "Compared to carbon nanotubes, which are closed structures, nanoscrolls are open spirals, so you have all this surface area available to manipulate."

"And you can tune the separation of a nanoscroll's layers, and do all sorts of neat things with graphene oxide that you can't really do with nanotubes and graphene itself," Stein adds.

When they looked at what had been done previously in this field, the students found that scientists had successfully produced nanoscrolls from graphene, though with very complicated processes to keep the material pure. A few groups had tried doing the same with graphene oxide, but their attempts were literally deflated.

"What was out there in the literature was more like crumpled graphene," Stein says. "You can't really see the conical nature. It's not really clear what was made."

Collapsing bubbles
Stein and Amadei first used a common technique called the Hummers' method to separate graphite flakes into individual layers of graphene oxide. They then placed the graphene oxide flakes in solution and stimulated the flakes to curl into scrolls, using two similar approaches: a low-frequency tip-sonicator, and a high-frequency custom reactor.

The tip-sonicator is a probe made of piezoelectric material that shakes at a low, 20Hz frequency when voltage is applied. When placed in a solution, the tip-sonicator produces sound waves that stir up the surroundings, creating bubbles in the solution.

Similarly, the group's reactor contains a piezoelectric component that is connected to a circuit. As voltage is applied, the reactor shakes - at a higher, 390 Hz frequency compared with the tip-sonicator - creating bubbles in the solution within the reactor.

Stein and Amadei applied both techniques to solutions of graphene oxide flakes and observed similar effects: The bubbles that were created in solution eventually collapsed, releasing energy that caused the flakes to spontaneously curl into scrolls. The researchers found they could tune the dimensions of the scrolls by varying the treatment duration and the frequency of the ultrasonic waves. Higher frequencies and shorter treatments did not lead to significant damage of the graphene oxide flakes and produced larger scrolls, while low frequencies and longer treatment times tended to cleave flakes apart and create smaller scrolls.

While the group's initial experiments turned a relatively low number of flakes - about 10 percent - into scrolls, Stein says both techniques may be optimized to produce higher yields. If they can be scaled up, he says the techniques can be compatible with existing industrial processes, particularly for water purification.

"If you can make this in large scales and it's cheap, you could make huge bulk samples of filters and throw them out in the water to remove all sorts of contaminants," Stein says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Simulating CO2 saturation in rocks offers clues to carbon capture, storage
Fukuoka, Japan (SPX) Apr 18, 2016
Carbon capture and storage (CCS) is a relatively new method for capturing carbon dioxide (CO2) emissions from power stations and industrial processes and pushing the greenhouse gas underground to prevent it from entering the atmosphere. Suitable locations for CCS include depleted oil and gas fields or deep aquifers. A detailed understanding of the passage of fluid within the rocks of these targe ... read more


CARBON WORLDS
The P tax cometh

A cellular sensor of phosphate levels

China wields increasing power in world wine market: study

Australia's biggest cattle firm says China-led bid preferred

CARBON WORLDS
Russian scientists develop long-range secure quantum comms system

Intel to slash up to 12,000 jobs in restructuring

Canada PM lights up Internet explaining quantum computing

Ames physicists discover new material that may speed computing

CARBON WORLDS
Heavy-lift helicopters test external load capabilities

Russian stealth bomber to carry hypersonic missiles

Delayed take-off for China's own regional jet

Experts examine new debris for MH370 clues

CARBON WORLDS
UA team revs up connected-vehicle technology

Automaker Mitsubishi admits falsifying fuel-efficiency tests

VW to offer buyback, payout to owners of polluting cars

China auto sales up nearly 9% in March: industry group

CARBON WORLDS
China defends ground in steel crisis talks

New BRICS-supported bank approves first set of loans

Steel producers to urge China to cut output

Panama Canal restricts ship depth due to drought

CARBON WORLDS
Clear-cutting destabilizes carbon in forest soils, Dartmouth study finds

Senegal environment ministry delegation arrested by Gambia

Activists appeal to EU over Polish logging of primeval forest

Trees trade carbon among each other

CARBON WORLDS
Penn to study intense awe astronauts feel viewing Earth from space

Sentinel-1B will complete European Radar Vision initiative

Sentinel-1 sees rice paddy drop in the Mekong Delta

DigitalGlobe delivers first phase of continent-scale mapping initiative for PSMA Australia

CARBON WORLDS
Intracellular recordings using nanotower electrodes

'Honeycomb' of nanotubes could boost genetic engineering

A movie of the microworld: Physicists create nanoparticle picture series

NREL reveals potential for capturing waste heat via nanotubes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.