Subscribe free to our newsletters via your
. GPS News .




NANO TECH
Nanofriction on the tip of the microscope
by Staff Writers
Rome, Italy (SPX) Dec 20, 2013


This is a graphical rendering of the "system" studied by Pellegrini, Santoro, and Tosatti. Credit: SISSA.

Atomic force microscopes are able to reproduce spectacular images, at the scale of single atoms. This is made possible by the oscillation of a very sharp probe tip over the surface being observed. The tip never touches the surface but gets so close to it, at distances in the order of one billionth of a metre, that it "feels" the force due to the interaction with the atoms making up the material being observed.

These are tiny forces, in the order of nanonewtons (meaning one billion times smaller than the weight of an apple).

By measuring these forces one can reproduce an image of the material. A research group, which brings together experimental physicists from the University of Basel and theoretical physicists from SISSA, has observed and explained a peculiar effect, a source of "friction" in this type of nanoscopic observations.

When the tip of the microscope oscillates over certain surfaces, in this case over NbSe2 (niobium selenide), peaks of "dissipation" (i.e., loss of energy) can be seen when the tip is at specific distances from the surface, as if it were held back, at certain locations, by some frictional force.

This effect, which is related to a property of the surface known as charge density waves (CDW), was experimentally observed by the Basel physicists and first explained by Franco Pellegrini, Giuseppe Santoro and Erio Tosatti, of SISSA, by means of a theoretical model analysed with the use of numerical simulations.

"Our model describes in detail the interaction between the tip of the atomic force microscope and the CDW," explains Pellegrini. "The model reproduces - and predicts - the data observed experimentally".

"Knowledge of nanofriction is important today. Progressive miniaturization of electronic devices makes it crucial to understand the mechanisms underlying energy losses", continues Pellegrini. "In addition, thanks to our work we now have a more accurate description of charge density waves". The paper was published in Nature Materials.

.


Related Links
International School of Advanced Studies (SISSA)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nanoscale friction: High energy losses in the vicinity of charge density waves
Basel, Switzerland (SPX) Dec 20, 2013
In collaboration with the University of Basel, an international team of researchers has observed a strong energy loss caused by frictional effects in the vicinity of charge density waves. This may have practical significance in the control of nanoscale friction. The results have been published in the scientific journal Nature Materials. Friction is often seen as an adverse phenomenon that ... read more


NANO TECH
Oregano Oil May Help Sunflower Seeds Keep Longer

Chinese firm buys historic French chateau, vineyard

New Zealand economy rebounds after drought

Haiyan to hit Philippine coconut oil exports: industry official

NANO TECH
Bio-inspired method to grow high-quality graphene for high-end electronic devices

Next-generation semiconductors synthesis

A step closer to composite-based electronics

50 Meters of Optical Fiber Shrunk to the Size of Microchips

NANO TECH
AgustaWestland wins $1.6B helicopter contract

Emirates shoot down BAE's $6B Typhoon jet deal

Cathay Pacific orders 21 Boeing 777-9X planes

A new conceptual configuration for air-breathing hypersonic airplanes

NANO TECH
Golf skateboard aims to rejuvenate 'old man's sport'

China city caps car-buying to curb pollution

France sends famed De Gaulle Citroen to China for anniversary

Renault signs $1.3 bn joint venture deal with China's Dongfeng

NANO TECH
Sonar search for China tycoon missing after France chopper crash

Bitcoin recovers after slumping on China bank measures

Bitcoin crashes after China bank measures

Sri Lanka revives state firm with Chinese ships

NANO TECH
Four degree rise will end vegetation 'carbon sink'

Tropical forests mitigate extreme weather events

Low-cost countries are not the best conservation investment

Significant advance reported with genetically modified poplar trees

NANO TECH
Planet Labs Raises Financing

The Fantastical Life of a GIS Analyst

Brazil, China to make new satellite launch in 2014

Mitsubishi Electric Awarded Contract for GOSAT-2 Satellite System

NANO TECH
Graphene nanoribbons an ice-melting coat for radar

Nanofriction on the tip of the microscope

Nanoscale friction: High energy losses in the vicinity of charge density waves

Nanoparticles and their orbital positions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement