GPS News  
STELLAR CHEMISTRY
Nanodiamonds explain mysterious source of Milky Way microwaves
by Brooks Hays
Washington (UPI) Jun 11, 2018

Astronomers have discovered microscopic gemstones surrounding three infant star systems in the Milky Way. Researchers believe tiny diamonds account for the shimmer of cosmic microwave light that has puzzled astronomers for 20 years.

The shimmer is known as anomalous microwave emission, or AME. For decades, scientists have struggled to explain why the odd glow emanates from several of the galaxy's protoplanetary disks.

Until now, scientists thought the most likely culprit was a type of carbon-based molecule called a polycyclic aromatic hydrocarbon, or PAH. The interstellar particles yield a faint infrared signature.

Another possible culprit, hydrogenated nanodiamonds, produce a similar but slightly different infrared pattern.

Using the National Science Foundation's Green Bank Telescope in West Virginia and the Australia Telescope Compact Array, astronomers were able to observe AME surrounding three young stars, V892 Tau, HD 97048 and MWC 297. Scientists found the AME emissions most directly matched the infrared pattern produced by nanodiamonds.

"This is the first clear detection of anomalous microwave emission coming from protoplanetary disks," Green Bank astronomer David Frayer said in a news release.

Previous observations have shown other star systems produce the signature made by PAHs but show no signs of AME, suggesting nanodiamonds alone account for the faint shimmer.

Studies have previously suggested the presence of nanodiamonds, tiny particles of crystalline carbon, in the protoplanetary disks surrounding distant stars, but the latest findings -- published this week in the journal Nature Astronomy -- are the first to link the particles with AME.

Scientists believe cosmic nanodiamonds are formed when vaporized carbon atoms become superheated by young stars.

Nanodiamonds produce what's called a "dipole moment," yielding an electromagnetic radiation when they spin. Because they're so small, they can spin at tremendous speeds, emitting electromagnetic radiation in the microwave range.

"This is a cool and unexpected resolution to the puzzle of anomalous microwave radiation," said Jane Greaves, an astronomer at Cardiff University in Wales. "It's even more interesting that it was obtained by looking at protoplanetary disks, shedding light on the chemical features of early solar systems, including our own."


Related Links
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
More Mystery Objects Found Near Milky Way's Black Hole
Kamuela HI (SPX) Jun 08, 2018
Astronomers have discovered several bizarre objects at the galactic Center that are concealing their true identity behind a smoke screen of dust; they look like gas clouds, but behave like stars. At today's American Astronomical Society Meeting in Denver, a team of researchers led by UCLA Postdoctoral Scholar Anna Ciurlo announced their results, which they obtained using 12 years of data taken from W. M. Keck Observatory on Maunakea, Hawaii "These compact dusty stellar objects move extremely ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
On the origins of agriculture, researchers uncover new clues

French beekeepers accuse Bayer after glyphosate found in honey

Five things to know about the Bayer-Monsanto megadeal

Scientists boost crop production by 47 percent by speeding up photorespiration

STELLAR CHEMISTRY
Building nanomaterials for next-generation computing

Novel insulators with conducting edges

Toshiba completes $21 bn sale of chip unit

Time crystals may hold secret to coherence in quantum computing

STELLAR CHEMISTRY
US fighter jet crashes off Japan coast

Northrop wins more than $81.2M for Hawkeye services

Britain's first four F-35Bs arrive ahead of schedule

US grounds B-1 bombers over safety concerns

STELLAR CHEMISTRY
New material could replace expensive platinum catalysts used in hydrogen cars

Germany orders recall of 60,000 Audis over emissions

French carmaker PSA to exit Iran over US sanction risk

Electric vehicle market exposed to risk from violence

STELLAR CHEMISTRY
US, China reach $1.4 bn ZTE deal as signs emerge of trade talks progres

EU-US trade row looms over NATO defence meet

China's trade surplus with US jumps, global imports surge

Trump trade fury torpedoes Canada's G7 summit

STELLAR CHEMISTRY
New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

Forest loss in one part of US can harm trees on the opposite coast

STELLAR CHEMISTRY
Wind satellite shows off

20 Years of Earth Data Now at Your Fingertips

NASA Soil Moisture Data Advances Global Crop Forecasts

New algorithm fuses quality and quantity in satellite imagery

STELLAR CHEMISTRY
AI-based method could speed development of specialized nanoparticles

Researchers use magnets to move tiny DNA-based nano-devices

Atomically thin nanowires convert heat to electricity more efficiently

Change the face of nanoparticles and you'll rule chemistry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.