Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
NIST's 'nanotubes on a chip' may simplify optical power measurements
by Staff Writers
Washington DC (SPX) Jan 29, 2013


The circular patch of carbon nanotubes on a pink silicon backing is one component of NIST's new cryogenic radiometer, shown with a quarter for scale. Gold coating and metal wiring has yet to be added to the chip. The radiometer will simplify and lower the cost of disseminating measurements of laser power. Credit: Tomlin/NIST.

The National Institute of Standards and Technology (NIST) has demonstrated a novel chip-scale instrument made of carbon nanotubes that may simplify absolute measurements of laser power, especially the light signals transmitted by optical fibers in telecommunications networks.

The prototype device, a miniature version of an instrument called a cryogenic radiometer, is a silicon chip topped with circular mats of carbon nanotubes standing on end.

The mini-radiometer builds on NIST's previous work using nanotubes, the world's darkest known substance, to make an ultraefficient, highly accurate optical power detector, and advances NIST's ability to measure laser power delivered through fiber for calibration customers.

"This is our play for leadership in laser power measurements," project leader John Lehman says. "This is arguably the coolest thing we've done with carbon nanotubes. They're not just black, but they also have the temperature properties needed to make components like electrical heaters truly multifunctional."

NIST and other national metrology institutes around the world measure laser power by tracing it to fundamental electrical units. Radiometers absorb energy from light and convert it to heat.

Then the electrical power needed to cause the same temperature increase is measured. NIST researchers found that the mini-radiometer accurately measures both laser power (brought to it by an optical fiber) and the equivalent electrical power within the limitations of the imperfect experimental setup. The tests were performed at a temperature of 3.9 K, using light at the telecom wavelength of 1550 nanometers.

The tiny circular forests of tall, thin nanotubes called VANTAs ("vertically aligned nanotube arrays") have several desirable properties. Most importantly, they uniformly absorb light over a broad range of wavelengths and their electrical resistance depends on temperature. The versatile nanotubes perform three different functions in the radiometer.

One VANTA mat serves as both a light absorber and an electrical heater, and a second VANTA mat serves as a thermistor (a component whose electrical resistance varies with temperature).

The VANTA mats are grown on the micro-machined silicon chip, an instrument design that is easy to modify and duplicate. In this application, the individual nanotubes are about 10 nanometers in diameter and 150 micrometers long.

By contrast, ordinary cryogenic radiometers use more types of materials and are more difficult to make. They are typically hand assembled using a cavity painted with carbon as the light absorber, an electrical wire as the heater, and a semiconductor as the thermistor.

Furthermore, these instruments need to be modeled and characterized extensively to adjust their sensitivity, whereas the equivalent capability in NIST's mini-radiometer is easily patterned in the silicon.

NIST plans to apply for a patent on the chip-scale radiometer. Simple changes such as improved temperature stability are expected to greatly improve device performance.

Future research may also address extending the laser power range into the far infrared, and integration of the radiometer into a potential multipurpose "NIST on a chip" device.

N.A. Tomlin, J.H. Lehman. Carbon nanotube electrical-substitution cryogenic radiometer: initial results. Optics Letters. Vol. 38, No. 2. Jan. 15, 2013.

.


Related Links
National Institute of Standards and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Organic ferroelectric molecule shows promise for memory chips, sensors
Seattle WA (SPX) Jan 29, 2013
At the heart of computing are tiny crystals that transmit and store digital information's ones and zeroes. Today these are hard and brittle materials. But cheap, flexible, nontoxic organic molecules may play a role in the future of hardware. A team led by the University of Washington in Seattle and the Southeast University in China discovered a molecule that shows promise as an organic alt ... read more


CHIP TECH
Innovative uses of nanotechnology in food and agriculture

Some Health Benefits Of Berries May Not Make It Past Your Mouth

Soya protein can be replaced by rapeseed protein

EU urges two-year ban on 'disturbing' bee insecticides

CHIP TECH
A new material for environmentally friendlier electronics

Novel materials: smart and magnetic

Rice technique points toward 2-D devices

New Options for transparent contact electrodes

CHIP TECH
H-1 Helicopter Mission Computer Contract Awarded

Japan has concerns on F-35 sales

Philippines to buy 12 S. Korean fighter jets

ANA keeps forecast as nine-month net profit surges

CHIP TECH
Never get stressed searching for a parking space again

Honda nine-month net profit doubles to $3.2 bn

Japan's top three automakers post record 2012 sales

Motion Control Keeps Electric Car's Four Wheels on the Road

CHIP TECH
EU 'better than North America' for China firms: survey

Brazil's slow growth bad for sport events

China mining firm falls on Hong Kong trading debut

Pakistan approves port transfer to China

CHIP TECH
New research will help shed light on role of Amazon forests in global carbon cycle

Dartmouth research offers new control strategies for bipolar bark beetles

Brazil to inventory Amazon rainforest trees

Civilians fell rare Syrian trees for firewood

CHIP TECH
Remote Sensing Solution Takes Wing Aboard Ultralight Aircraft

New tools enable high-res observations from anywhere with internet access

Internet age navigation drives economies: studies

RapidEye Commits to Data Continuity; Discusses System Health and Life Span

CHIP TECH
Notre Dame studies benefits and threats of nanotechnology research

A nano-gear in a nano-motor inside

New Research Gives Insight into Graphene Grain Boundaries

Chemistry resolves toxic concerns about carbon nanotubes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement